Articles by "Regression Analysis"

2SI AASHTO Abaqus Actix Analyzer ADINA Adobe Acrobat Airports AISC Algorithms Aluminium Animation ANSYS APF Nexus Aquaveo Architecture Artificial Intelligence ASCE ASDIP Ashampoo Asphalt ASTM Autocad Autodesk Bentley BetonExpress BIMware MASTER BitCoin Blast Books Bridges Buildings CAD Calculus CCleaner Cement Chasm Consulting Civil 3D Clay Coastal Structures Codes ComingSoon Computer Engineering Concrete Conference Books CorelCAD Corrosion Courses/Lessons Cranes CSI CTI Vespa2 Daemon Tools Dams Data Analysis Data Mining Deep Freeze Deep Learning Design and Build Websites DiCad Strakon Dictionary Digital Canal DimSoln Dlubal Drainage Dredging Dynamics Earthquake Earthworks EC2 Reinforcement EC3 Steel Connections EC5 Timber Connections Economy Elasticity EnerCalc English Language Ensoft Entertainment Environmental Engineering Equipments Erosion ESPRI ETABS Eurocode Excavation Excel Expansive Soils FIDES DV-Partner Finite Element Model Fire Safety Fluid Mechanics Forensic Engineering Formulas Fortran Foundations Foxit Phantom FRP Game of Thrones Geo-Slope Geo5 Geoenvironmental Engineering Geographic Information Systems Geology Geomechanics Geomembranes Geosolve GeoStru GeoStudio Geosynthetics GeoTec Elpla Geotechnical Engineering Golden Software Graitec Grammar Grapher Ground Anchors Groundwater Grouting Gstarsoft Harry Potter Highways Historic Structures HTML5 Hydraulics Hydrology IBM IceCream Ebook Reader IDEA StatiCa IELTS IES Ikon Science InfraWorks Itasca Flac2D Java KESZ ConSteel Landslides LaTeX Limcon LimitState: GEO Lindo Linear Algebra Lingo Liquefaction LPile Lusas Malwarbytes Management Maple MapViewer Masonry Walls Materials Mathematica Maths MathType MATLAB Mechanical Engineering Mechanics Metaheuristic Algorithms Microsoft MicroStation Midas Minitab Money Movies Nanocomposites Neural Networks NovoTech Nuclear Power Plants Numerical Mathematics OaSys Octave Office Offshore OLGA Optimization Pavements PC Games PDF Phase2 Physics Piles PipeLines Pipesim Plants Plasticity Plaxis Polymath Polymer Power GEOPAK Powerpoint Precast Prestressed Concrete Pro Sap Proektsoft Programming Projects PROKON ProStructures ProtaStructure PTC MathCad Python QuickConcreteWall QuickConcretWall QuickFooting QuickMasonary QuickRWall R Language Radar System Railways RAM RCDC Regression Analysis Reinforced Concrete Reinforced Masonry Retaining Structures RetainPro Revit RISA Risk Analysis Roads RocDoc Rock Mechanics Rocscience Roofs S-Frame S.T.A. DATA 3Muri SAFE Safety Salford Predictive Modeler SAP2000 SCAD Office Schedule it Schlumberger SCIA Engineer Security Seepage Settle 3D Sewage ShapeBuilder Shotcrete Slide Slope Stability Sludge Smart Cities Snow Loads Softwares Soil Improvement Soil Mechanics SoilOffice SoilWorks SPSS STAAD.Foundation STAAD.Pro Standards Stat-Ease Stata Statics Statistics Steel Stone Strater StruCalc Structural Designer Structural Office StructurePoint Structures StruSoft Surfer Surveying Swarm Intelligence System Mechanic Tableau Technical Drawing Technology Tedds Tekla Testing The Big Bang Theory Thermodynamics Timber TOEFL Topology Torrent Traffic Transmission Lines Transportation Engineering Trimble Tunnels Turbo Pascal TV Series TweakBit Unsaturated Visual Basic Visual Integrity VisualAnalysis VisualFoundation VisualPlate VisualShearWall Water Welding Wind Loads Windows WinRAR Wolfram Wood Word
Showing posts with label Regression Analysis. Show all posts

Charles M. Judd, Gary H. McClelland, Carey S. Ryan ... 378 pages - Publisher: Routledge; 3rd edition (May, 2017) ... Language: English - ISBN-10: 1138819832 - ISBN-13: 978-1138819832.

Data Analysis: A Model Comparison Approach to Regression, ANOVA, and Beyond is an integrated treatment of data analysis for the social and behavioral sciences. It covers all of the statistical models normally used in such analyses, such as multiple regression and analysis of variance, but it does so in an integrated manner that relies on the comparison of models of data estimated under the rubric of the general linear model. Data Analysis also describes how the model comparison approach and uniform framework can be applied to models that include product predictors (i.e., interactions and nonlinear effects) and to observations that are nonindependent. Indeed, the analysis of nonindependent observations is treated in some detail, including models of nonindependent data with continuously varying predictors as well as standard repeated measures analysis of variance. This approach also provides an integrated introduction to multilevel or hierarchical linear models and logistic regression. Finally, Data Analysis provides guidance for the treatment of outliers and other problematic aspects of data analysis. It is intended for advanced undergraduate and graduate level courses in data analysis and offers an integrated approach that is very accessible and easy to teach.

Highlights of the third edition include: A new chapter on logistic regression; Expanded treatment of mixed models for data with multiple random factors; Updated examples; An enhanced website with PowerPoint presentations and other tools that demonstrate the concepts in the book; exercises for each chapter that highlight research findings from the literature; data sets, R code, and SAS output for all analyses; additional examples and problem sets; and test questions.

Erik Cuevas, Daniel Zaldívar, Marco Pérez-Cisneros ... 218 pages - Publisher: Springer; (April, 2018) ... Language: English - ASIN: B07C3LK4K3 by Amazon.

This book explores new alternative metaheuristic developments that have proved to be effective in their application to several complex problems. Though most of the new metaheuristic algorithms considered offer promising results, they are nevertheless still in their infancy. To grow and attain their full potential, new metaheuristic methods must be applied in a great variety of problems and contexts, so that they not only perform well in their reported sets of optimization problems, but also in new complex formulations. The only way to accomplish this is to disseminate these methods in various technical areas as optimization tools. In general, once a scientist, engineer or practitioner recognizes a problem as a particular instance of a more generic class, he/she can select one of several metaheuristic algorithms that guarantee an expected optimization performance. Unfortunately, the set of options are concentrated on algorithms whose popularity and high proliferation outstrip those of the new developments. This structure is important, because the authors recognize this methodology as the best way to help researchers, lecturers, engineers and practitioners solve their own optimization problems.

Mark H. Holmes ... 497 pages - Publisher: Springer; (May, 2016) ... Language: English - ISBN-10: 331930254X - ISBN-13: 978-3319302546

This textbook provides and introduction to numerical computing and its applications in science and engineering. The topics covered include those usually found in an introductory course, as well as those that arise in data analysis. This includes optimization and regression based methods using a singular value decomposition. The emphasis is on problem solving, and there are numerous exercises throughout the text concerning applications in engineering and science. The essential role of the mathematical theory underlying the methods is also considered, both for understanding how the method works, as well as how the error in the computation depends on the method being used. The MATLAB codes used to produce most of the figures and data tables in the text are available on the author’s website and SpringerLink.

Christian Ritz, Signe Marie Jensen, Daniel Gerhard, Jens Carl Streibig ... 226 pages - Publisher: Chapman and Hall/CRC; (July, 2019) ... Language: English - ISBN-10: 1138034312 - ISBN-13: 978-1138034310

Nowadays the term dose-response is used in many different contexts and many different scientific disciplines including agriculture, biochemistry, chemistry, environmental sciences, genetics, pharmacology, plant sciences, toxicology, and zoology. In the 1940 and 1950s, dose-response analysis was intimately linked to evaluation of toxicity in terms of binary responses, such as immobility and mortality, with a limited number of doses of a toxic compound being compared to a control group (dose 0). Later, dose-response analysis has been extended to other types of data and to more complex experimental designs. Moreover, estimation of model parameters has undergone a dramatic change, from struggling with cumbersome manual operations and transformations with pen and paper to rapid calculations on any laptop. Advances in statistical software have fueled this development.

Key Features: Provides a practical and comprehensive overview of dose-response analysis. + Includes numerous real data examples to illustrate the methodology. + R code is integrated into the text to give guidance on applying the methods. + Written with minimal mathematics to be suitable for practitioners. + Includes code and datasets on the book’s GitHub: https://github.com/DoseResponse. This book focuses on estimation and interpretation of entirely parametric nonlinear dose-response models using the powerful statistical environment R. Specifically, this book introduces dose-response analysis of continuous, binomial, count, multinomial, and event-time dose-response data. The statistical models used are partly special cases, partly extensions of nonlinear regression models, generalized linear and nonlinear regression models, and nonlinear mixed-effects models (for hierarchical dose-response data). Both simple and complex dose-response experiments will be analyzed.

Samprit Chatterjee, Jeffrey S. Simonoff ... 252 pages - Publisher: Wiley; (December, 2012) ... Language: English - ISBN-10: 0470887168 - ISBN-13: 978-0470887165

Written by two established experts in the field, the purpose of the Handbook of Regression Analysis is to provide a practical, one-stop reference on regression analysis. The focus is on the tools that both practitioners and researchers use in real life. It is intended to be a comprehensive collection of the theory, methods, and applications of regression methods, but it has been deliberately written at an accessible level. The handbook provides a quick and convenient reference or “refresher” on ideas and methods that are useful for the effective analysis of data and its resulting interpretations. Students can use the book as an introduction to and/or summary of key concepts in regression and related course work (including linear, binary logistic, multinomial logistic, count, and nonlinear regression models). Theory underlying the methodology is presented when it advances conceptual understanding and is always supplemented by hands-on examples.

Daniel J. Denis ... 224 pages - Publisher: Wiley; (September, 2018) ... Language: English - ISBN-10: 9781119465812 - ISBN-13: 978-1119465812

This concise and very easy-to-use primer introduces readers to a host of computational tools useful for making sense out of data, whether that data come from the social, behavioral, or natural sciences. The book places great emphasis on both data analysis and drawing conclusions from empirical observations. It also provides formulas where needed in many places, while always remaining focused on concepts rather than mathematical abstraction. SPSS Data Analysis for Univariate, Bivariate, and Multivariate Statistics offers a variety of popular statistical analyses and data management tasks using SPSS that readers can immediately apply as needed for their own research, and emphasizes many helpful computational tools used in the discovery of empirical patterns. The book begins with a review of essential statistical principles before introducing readers to SPSS. The book then goes on to offer chapters on: Exploratory Data Analysis, Basic Statistics, and Visual Displays; Data Management in SPSS; Inferential Tests on Correlations, Counts, and Means; Power Analysis and Estimating Sample Size; Analysis of Variance – Fixed and Random Effects; Repeated Measures ANOVA; Simple and Multiple Linear Regression; Logistic Regression; Multivariate Analysis of Variance (MANOVA) and Discriminant Analysis; Principal Components Analysis; Exploratory Factor Analysis; and Non-Parametric Tests. This helpful resource allows readers to: Understand data analysis in practice rather than delving too deeply into abstract mathematical concepts. Make use of computational tools used by data analysis professionals. Focus on real-world application to apply concepts from the book to actual research.

Conrad Carlberg ... 568 pages - Publisher: Que Publishing; (December, 2017) ... Language: English - ISBN-10: 0789759055 - ISBN-13: 978-0789759054

Nationally recognized Excel expert Conrad Carlberg shows you how to use Excel 2016 to perform core statistical tasks every business professional, student, and researcher should master. Using real-world examples and downloadable workbooks, Carlberg helps you choose the right technique for each problem and get the most out of Excel’s statistical features. Along the way, he clarifies confusing statistical terminology and helps you avoid common mistakes. You’ll learn how to use correlation and regression, analyze variance and covariance, and test statistical hypotheses using the normal, binomial, t, and F distributions. To help you make accurate inferences based on samples from a population, Carlberg offers insightful coverage of crucial topics ranging from experimental design to the statistical power of F tests. Updated for Excel 2016, this guide covers both modern consistency functions and legacy compatibility functions. Becoming an expert with Excel statistics has never been easier! In this book, you’ll find crystal-clear instructions, insider insights, and complete step-by-step guidance.

Artificial Neural Networks: Understand The Basic Concepts [Size: 285 MB] ... Artificial Intelligence is becoming progressively more relevant in today’s world. The rise of Artificial intelligence has the potential to transform our future more than any other technology. By using the power of algorithms, you can develop applications which intelligently interact with the world around you, from building intelligent recommender systems to creating self-driving cars, robots and chatbots. Neural networks are a key element of artificial intelligence.

Neural networks are one of the most fascinating machine learning models and are used to solve wide range of problems in different areas of artificial intelligence and machine learning. Yet too few really understand how neural networks actually work. This course will take you on a fun and unhurried journey, starting from very simple ideas, and gradually building up an understanding of how neural networks work. The purpose of this course is to make neural networks accessible to as many students as possible.

In this course I’m going to explain the key aspects of neural networks and provide you with a foundation to get started with advanced topics. You will build a solid foundation knowledge of how a neural network learns from data, and the principles behind it. You will not only learn how to train neural networks, but will also explore generalization of these networks. Later we will delve into combining different neural network models and work with the real-world use cases. You’ll understand how to solve complex computational problems efficiently.

Practical Statistics For Data And Business Analysis [Size: 6.34 GB] ... This course material is prepared from highly experienced engineers worked in a leader companies like Microsoft , Facebook and Google. After hard working from five months ago we created +270 Lectures/Articles to cover everything related to practical statistics. In no time with simple and easy way you will learn and love statistics. We stress in this course to make it very spontaneous to make all students love statistics .

John Fox, Sanford Weisberg ... 608 pages - Publisher: SAGE Publications; 3rd edition (October, 2018) ... Language: English - ISBN-10: 1544336470 - ISBN-13: 978-1544336473 ...

An R Companion to Applied Regression is a broad introduction to the R statistical computing environment in the context of applied regression analysis. John Fox and Sanford Weisberg provide a step-by-step guide to using the free statistical software R, an emphasis on integrating statistical computing in R with the practice of data analysis, coverage of generalized linear models, and substantial web-based support materials. The Third Edition includes a new chapter on mixed-effects models, new and updated data sets, and a de-emphasis on statistical programming, while retaining a general introduction to basic R programming. The authors have substantially updated both the carand effects packages for R for this new edition, and include coverage of RStudio and R Markdown.

Jacek Welc, Pedro J. R. Esquerdo ... 286 pages - Publisher: Springer; (December, 2017) ... Language: English - ASIN: B078Q1RQDV by Amazon...

This book offers hands-on statistical tools for business professionals by focusing on the practical application of a single-equation regression. The authors discuss commonly applied econometric procedures, which are useful in building regression models for economic forecasting and supporting business decisions. A significant part of the book is devoted to traps and pitfalls in implementing regression analysis in real-world scenarios. The book consists of nine chapters, the final two of which are fully devoted to case studies. Today's business environment is characterised by a huge amount of economic data. Making successful business decisions under such data-abundant conditions requires objective analytical tools, which can help to identify and quantify multiple relationships between dozens of economic variables. Single-equation regression analysis, which is discussed in this book, is one such tool. The book offers a valuable guide and is relevant in various areas of economic and business analysis, including marketing, financial and operational management.

Rob J. Hyndman, George Athanasopoulos ... 382 pages - Publisher: OTexts; 2nd edition (May, 2018) ... Language: English - ISBN-10: 0987507117 - ISBN-13: 978-0987507112 ...

Forecasting is required in many situations. Deciding whether to build another power generation plant in the next five years requires forecasts of future demand. Scheduling staff in a call centre next week requires forecasts of call volumes. Stocking an inventory requires forecasts of stock requirements. Telecommunication routing requires traffic forecasts a few minutes ahead. Whatever the circumstances or time horizons involved, forecasting is an important aid in effective and efficient planning. This textbook provides a comprehensive introduction to forecasting methods and presents enough information about each method for readers to use them sensibly. Examples use R with many data sets taken from the authors' own consulting experience. In this second edition, all chapters have been updated to cover the latest research and forecasting methods. Three new chapters have been added on dynamic regression forecasting, hierarchical forecasting and practical forecasting issues.

Xiaofeng Wang, Yu Ryan Yue, Julian J. Faraway ... 324 pages - Publisher: Chapman and Hall/CRC; Language: English - ISBN-10: 1498727255 - ISBN-13: 978-1498727259 ...

INLA stands for Integrated Nested Laplace Approximations, which is a new method for fitting a broad class of Bayesian regression models. No samples of the posterior marginal distributions need to be drawn using INLA, so it is a computationally convenient alternative to Markov chain Monte Carlo (MCMC), the standard tool for Bayesian inference. Bayesian Regression Modeling with INLA covers a wide range of modern regression models and focuses on the INLA technique for building Bayesian models using real-world data and assessing their validity. A key theme throughout the book is that it makes sense to demonstrate the interplay of theory and practice with reproducible studies. Complete R commands are provided for each example, and a supporting website holds all of the data described in the book. An R package including the data and additional functions in the book is available to download. The book is aimed at readers who have a basic knowledge of statistical theory and Bayesian methodology. It gets readers up to date on the latest in Bayesian inference using INLA and prepares them for sophisticated, real-world work.

Douglas C. Montgomery, Elizabeth A. Peck, G. Geoffrey Vining ... 672 pages - Publisher: Wiley; 5th edition (April, 2012) ... Language: English - ISBN-10: 9780470542811 - ISBN-13: 978-0470542811 ... 

A comprehensive and up-to-date introduction to the fundamentals of regression analysis: Introduction to Linear Regression Analysis, Fifth Edition continues to present both the conventional and less common uses of linear regression in today’s cutting-edge scientific research. The authors blend both theory and application to equip readers with an understanding of the basic principles needed to apply regression model-building techniques in various fields of study, including engineering, management, and the health sciences. Following a general introduction to regression modeling,including typical applications, a host of technical tools are outlined such as basic inference procedures, introductory aspects of model adequacy checking, and polynomial regression models and their variations. The book then discusses how transformations and weighted least squares can be used to resolve problems of model inadequacy and also how to deal with influential observations. The Fifth Edition features numerous newly added topics,including: * A chapter on regression analysis of time series data that presents the Durbin-Watson test and other techniques for detecting autocorrelation as well as parameter estimation in time series regression models. * Regression models with random effects in addition to a discussion on subsampling and the importance of the mixed model. * Tests on individual regression coefficients and subsets of coefficients. * Examples of current uses of simple linear regression models and the use of multiple regression models for understanding patient satisfaction data. In addition to Minitab, SAS, and S-PLUS, the authors have incorporated JMP and the freely available R software to illustrate the discussed techniques and procedures in this new edition.Numerous exercises have been added throughout, allowing readers to test their understanding of the material. Introduction to Linear Regression Analysis, Fifth Edition is an excellent book for statistics and engineering courses on regression at the upper-undergraduate and graduate levels. The book also serves as a valuable, robust resource for professionals in the fields of engineering, life and biological sciences, and the social sciences.

Luca Massaron ... 312 pages - Publisher: Packt Publishing; (February, 2016) ... Language: English - ISBN-10: 1785286315 - ISBN-13: 978-1785286315 ...

Regression is the process of learning relationships between inputs and continuous outputs from example data, which enables predictions for novel inputs. There are many kinds of regression algorithms, and the aim of this book is to explain which is the right one to use for each set of problems and how to prepare real-world data for it. With this book you will learn to define a simple regression problem and evaluate its performance. The book will help you understand how to properly parse a dataset, clean it, and create an output matrix optimally built for regression. You will begin with a simple regression algorithm to solve some data science problems and then progress to more complex algorithms. The book will enable you to use regression models to predict outcomes and take critical business decisions. Through the book, you will gain knowledge to use Python for building fast better linear models and to apply the results in Python or in any computer language you prefer.

Andrew Gelman, Jennifer Hill ... 648 pages - Publisher: Cambridge Univ. Press; (December, 2006) ... Language: English - ISBN-10: 052168689X - ISBN-13: 978-0521686891 ...

Data Analysis Using Regression and Multilevel/Hierarchical Models is a comprehensive manual for the applied researcher who wants to perform data analysis using linear and nonlinear regression and multilevel models. The book introduces a wide variety of models, whilst at the same time instructing the reader in how to fit these models using available software packages. The book illustrates the concepts by working through scores of real data examples that have arisen from the authors' own applied research, with programming codes provided for each one. Topics covered include causal inference, including regression, poststratification, matching, regression discontinuity, and instrumental variables, as well as multilevel logistic regression and missing-data imputation. Practical tips regarding building, fitting, and understanding are provided throughout.

Stata Software for Statistics and Data Science v15 [Size: 295.5 MB] ... Stata is a general-purpose statistical software package created in 1985 by StataCorp. Most of its users work in research, especially in the fields of economics, sociology, political science, biomedicine and epidemiology.[citation needed]Stata's capabilities include data management, statistical analysis, graphics, simulations, regression analysis (linear and multiple), and custom programming. The name Stata is a portmanteau of the words statistics and data. The correct English pronunciation of Stata "must remain a mystery"; any of "Stay-ta", "Sta-ta" or "Stah-ta" are considered acceptable.

Features: Linear models: regression • censored outcomes • endogenous regressors • bootstrap, jackknife, and robust and cluster–robust variance • instrumental variables • three-stage least squares • constraints • quantile regression • GLS • more. Panel/longitudinal data: random and fixed effects with robust standard errors • linear mixed models • random-effects probit • GEE • random- and fixed-effects Poisson • dynamic panel-data models • instrumental variables • panel unit-root tests • more. Multilevel mixed-effects models: continuous, binary, count, and survival outcomes • two-, three-, and higher-level models • generalized linear models • nonlinear models • random intercepts • random slopes • crossed random effects • BLUPs of effects and fitted values • hierarchical models • residual error structures • DDF adjustments • support for survey data • more. Binary, count, and limited outcomes: logistic, probit, tobit • Poisson and negative binomial • conditional, multinomial, nested, ordered, rank-ordered, and stereotype logistic • multinomial probit • zero-inflated and left-truncated count models • selection models • marginal effects • more. Extended regression models (ERMs): combine endogenous covariates, sample selection, and nonrandom treatment in models for continuous, interval-censored, binary, and ordinal outcomes • more.

Johan A. K. Suykens, Marco Signoretto ... 525 pages - Publisher: Chapman and Hall/CRC; (October, 2014) ... Language: English - ISBN-10: 1482241390 - ISBN-13: 978-1482241396 ...

Regularization, Optimization, Kernels, and Support Vector Machines offers a snapshot of the current state of the art of large-scale machine learning, providing a single multidisciplinary source for the latest research and advances in regularization, sparsity, compressed sensing, convex and large-scale optimization, kernel methods, and support vector machines. Consisting of 21 chapters authored by leading researchers in machine learning, this comprehensive reference: Covers the relationship between support vector machines (SVMs) and the Lasso * Discusses multi-layer SVMs * Explores nonparametric feature selection, basis pursuit methods, and robust compressive sensing * Describes graph-based regularization methods for single- and multi-task learning * Considers regularized methods for dictionary learning and portfolio selection * Addresses non-negative matrix factorization * Examines low-rank matrix and tensor-based models * Presents advanced kernel methods for batch and online machine learning, system identification, domain adaptation, and image processing * Tackles large-scale algorithms including conditional gradient methods, (non-convex) proximal techniques, and stochastic gradient descent. Regularization, Optimization, Kernels, and Support Vector Machines is ideal for researchers in machine learning, pattern recognition, data mining, signal processing, statistical learning, and related areas.

Jian Qing Shi, Taeryon Choi ... 216 pages - Publisher: CRC; (July, 2011) .. Language: English - ISBN-10: 1439837732 - ISBN-13: 978-1439837733 ...

Gaussian Process Regression Analysis for Functional Data presents nonparametric statistical methods for functional regression analysis, specifically the methods based on a Gaussian process prior in a functional space. The authors focus on problems involving functional response variables and mixed covariates of functional and scalar variables. Covering the basics of Gaussian process regression, the first several chapters discuss functional data analysis, theoretical aspects based on the asymptotic properties of Gaussian process regression models, and new methodological developments for high dimensional data and variable selection. The remainder of the text explores advanced topics of functional regression analysis, including novel nonparametric statistical methods for curve prediction, curve clustering, functional ANOVA, and functional regression analysis of batch data, repeated curves, and non-Gaussian data. Many flexible models based on Gaussian processes provide efficient ways of model learning, interpreting model structure, and carrying out inference, particularly when dealing with large dimensional functional data. This book shows how to use these Gaussian process regression models in the analysis of functional data. Some MATLAB® and C codes are available on the first author’s website.

Samprit Chatterjee, Ali S. Hadi ... 424 pages - Publisher: Wiley; 5th edition (September, 2012) ... Language: English - ISBN-10: 0470905840 - ISBN-13: 978-0470905845...

Regression analysis is a conceptually simple method for investigating relationships among variables. Carrying out a successful application of regression analysis, however,requires a balance of theoretical results, empirical rules, and subjective judgment. Regression Analysis by Example, Fifth Edition has been expanded and thoroughly updated to reflect recent advances in the field. The emphasis continues to be on exploratory data analysis rather than statistical theory. The book offers in-depth treatment of regression diagnostics,transformation, multicollinearity, logistic regression, and robust regression. The book now includes a new chapter on the detection and correction of multicollinearity, while also showcasing the use of the discussed methods on newly added data sets from the fields of engineering, medicine, and business. The Fifth Edition also explores additional topics, including: Surrogate ridge regression * Fitting nonlinear models * Errors in variables * ANOVA for designed experiments. Methods of regression analysis are clearly demonstrated, and examples containing the types of irregularities commonly encountered in the real world are provided. Each example isolates one or two techniques and features detailed discussions, the required assumptions, and the evaluated success of each technique.Additionally, methods described throughout the book can be carried out with most of the currently available statistical software packages, such as the software package R.

Contact Form

Name

Email *

Message *

Theme images by blue_baron. Powered by Blogger.