Articles by "Algorithms"

Showing posts with label Algorithms. Show all posts

Noah Gift ... 272 pages - Publisher: Addison-Wesley Professional; (September, 2018) ... Language: English - ISBN-10: 0134863860 - ISBN-13: 978-0134863863.

Master Powerful Off-the-Shelf Business Solutions for AI and Machine Learning: Pragmatic AI will help you solve real-world problems with contemporary machine learning, artificial intelligence, and cloud computing tools. Noah Gift demystifies all the concepts and tools you need to get results—even if you don’t have a strong background in math or data science. Gift illuminates powerful off-the-shelf cloud offerings from Amazon, Google, and Microsoft, and demonstrates proven techniques using the Python data science ecosystem. His workflows and examples help you streamline and simplify every step, from deployment to production, and build exceptionally scalable solutions. As you learn how machine language (ML) solutions work, you’ll gain a more intuitive understanding of what you can achieve with them and how to maximize their value.

Building on these fundamentals, you’ll walk step-by-step through building cloud-based AI/ML applications to address realistic issues in sports marketing, project management, product pricing, real estate, and beyond. Whether you’re a business professional, decision-maker, student, or programmer, Gift’s expert guidance and wide-ranging case studies will prepare you to solve data science problems in virtually any environment. Get and configure all the tools you’ll need + Quickly review all the Python you need to start building machine learning applications + Master the AI and ML tool chain and project lifecycle + Work with Python data science tools such as IPython, Pandas, Numpy, Juypter Notebook, and Sklearn + Incorporate a pragmatic feedback loop that continually improves the efficiency of your workflows and systems + Develop cloud AI solutions with Google Cloud Platform, including TPU, Colaboratory, and Datalab services + Define Amazon Web Services cloud AI workflows, including spot instances, code pipelines, boto, and more + Work with Microsoft Azure AI APIs + Walk through building six real-world AI applications, from start to finish.

Umberto Michelucci ... 431 pages - Publisher: Apress; (September, 2018) ... Language: English - AmazonSIN: B07H6D9NQ8.
Work with advanced topics in deep learning, such as optimization algorithms, hyper-parameter tuning, dropout, and error analysis as well as strategies to address typical problems encountered when training deep neural networks. You’ll begin by studying the activation functions mostly with a single neuron (ReLu, sigmoid, and Swish), seeing how to perform linear and logistic regression using TensorFlow, and choosing the right cost function. The next section talks about more complicated neural network architectures with several layers and neurons and explores the problem of random initialization of weights. An entire chapter is dedicated to a complete overview of neural network error analysis, giving examples of solving problems originating from variance, bias, overfitting, and datasets coming from different distributions. Applied Deep Learning also discusses how to implement logistic regression completely from scratch without using any Python library except NumPy, to let you appreciate how libraries such as TensorFlow allow quick and efficient experiments. Case studies for each method are included to put into practice all theoretical information. You’ll discover tips and tricks for writing optimized Python code (for example vectorizing loops with NumPy).

What You Will Learn: Implement advanced techniques in the right way in Python and TensorFlow + Debug and optimize advanced methods (such as dropout and regularization) + Carry out error analysis (to realize if one has a bias problem, a variance problem, a data offset problem, and so on) + Set up a machine learning project focused on deep learning on a complex dataset. Who This Book Is For: Readers with a medium understanding of machine learning, linear algebra, calculus, and basic Python programming.

Mykel J. Kochenderfer, Tim A. Wheeler ... 520 pages - Publisher: The MIT Press; (March, 2019) ... Language: English - ISBN-10: 0262039427 - ISBN-13: 978-0262039420.

A comprehensive introduction to optimization with a focus on practical algorithms for the design of engineering systems: This book offers a comprehensive introduction to optimization with a focus on practical algorithms. The book approaches optimization from an engineering perspective, where the objective is to design a system that optimizes a set of metrics subject to constraints. Readers will learn about computational approaches for a range of challenges, including searching high-dimensional spaces, handling problems where there are multiple competing objectives, and accommodating uncertainty in the metrics. Figures, examples, and exercises convey the intuition behind the mathematical approaches. The text provides concrete implementations in the Julia programming language. Topics covered include derivatives and their generalization to multiple dimensions; local descent and first- and second-order methods that inform local descent; stochastic methods, which introduce randomness into the optimization process; linear constrained optimization, when both the objective function and the constraints are linear; surrogate models, probabilistic surrogate models, and using probabilistic surrogate models to guide optimization; optimization under uncertainty; uncertainty propagation; expression optimization; and multidisciplinary design optimization. Appendixes offer an introduction to the Julia language, test functions for evaluating algorithm performance, and mathematical concepts used in the derivation and analysis of the optimization methods discussed in the text. The book can be used by advanced undergraduates and graduate students in mathematics, statistics, computer science, any engineering field, (including electrical engineering and aerospace engineering), and operations research, and as a reference for professionals.

Bradley Efron, Trevor Hastie ... 495 pages - Publisher: Cambridge Univ. Press; (July, 2016) ... Language: English - ISBN-10: 1107149894 - ISBN-13: 978-1107149892.

The twenty-first century has seen a breathtaking expansion of statistical methodology, both in scope and in influence. 'Big data', 'data science', and 'machine learning' have become familiar terms in the news, as statistical methods are brought to bear upon the enormous data sets of modern science and commerce. How did we get here? And where are we going? This book takes us on an exhilarating journey through the revolution in data analysis following the introduction of electronic computation in the 1950s. Beginning with classical inferential theories - Bayesian, frequentist, Fisherian - individual chapters take up a series of influential topics: survival analysis, logistic regression, empirical Bayes, the jackknife and bootstrap, random forests, neural networks, Markov chain Monte Carlo, inference after model selection, and dozens more. The distinctly modern approach integrates methodology and algorithms with statistical inference. The book ends with speculation on the future direction of statistics and data science.

Naiyang Deng, Yingjie Tian, Chunhua Zhang ... 363 pages - Publisher: Chapman and Hall/CRC; (December, 2012) ... Language: English - AmazonSIN: B00OD4GXCI.

Support Vector Machines: Optimization Based Theory, Algorithms, and Extensions presents an accessible treatment of the two main components of support vector machines (SVMs)—classification problems and regression problems. The book emphasizes the close connection between optimization theory and SVMs since optimization is one of the pillars on which SVMs are built. The authors share insight on many of their research achievements. They give a precise interpretation of statistical leaning theory for C-support vector classification. They also discuss regularized twin SVMs for binary classification problems, SVMs for solving multi-classification problems based on ordinal regression, SVMs for semi-supervised problems, and SVMs for problems with perturbations. To improve readability, concepts, methods, and results are introduced graphically and with clear explanations. For important concepts and algorithms, such as the Crammer-Singer SVM for multi-class classification problems, the text provides geometric interpretations that are not depicted in current literature. Enabling a sound understanding of SVMs, this book gives beginners as well as more experienced researchers and engineers the tools to solve real-world problems using SVMs.

Jeff Heaton ... 244 pages - Publisher: Heaton Research, Inc.; (August, 2014) ... Language: English - AmazonSIN: B00MYLNLSQ.

Nature can be a great source of inspiration for artificial intelligence algorithms because its technology is considerably more advanced than our own. Among its wonders are strong AI, nanotechnology, and advanced robotics. Nature can therefore serve as a guide for real-life problem solving. In this book, you will encounter algorithms influenced by ants, bees, genomes, birds, and cells that provide practical methods for many types of AI situations. Although nature is the muse behind the methods, we are not duplicating its exact processes. The complex behaviors in nature merely provide inspiration in our quest to gain new insights about data.

Artificial Intelligence for Humans is a book series meant to teach AI to those readers who lack an extensive mathematical background. The reader only needs knowledge of basic college algebra and computer programming. Additional topics are thoroughly explained. Every chapter also includes a programming example. Examples are currently provided in Java, C#, and Python. Other languages are planned. No knowledge of biology is needed to read this book.

Svein Linge, Hans Petter Langtangen ... 216 pages - Publisher: Springer; (August, 2016) ... Language: English - AmazonSIN: B078YHJHL2.

This book presents computer programming as a key method for solving mathematical problems. There are two versions of the book, one for MATLAB and one for Python. The book was inspired by the Springer book TCSE 6: A Primer on Scientific Programming with Python (by Langtangen), but the style is more accessible and concise, in keeping with the needs of engineering students. The book outlines the shortest possible path from no previous experience with programming to a set of skills that allows the students to write simple programs for solving common mathematical problems with numerical methods in engineering and science courses. The emphasis is on generic algorithms, clean design of programs, use of functions, and automatic tests for verification.

Shai Shalev-Shwartz, Shai Ben-David ... 415 pages - Publisher: Cambridge Univ. Press; (May, 2014) ... Language: English - AmazonSIN: B00J8LQU8I.

Machine learning is one of the fastest growing areas of computer science, with far-reaching applications. The aim of this textbook is to introduce machine learning, and the algorithmic paradigms it offers, in a principled way. The book provides a theoretical account of the fundamentals underlying machine learning and the mathematical derivations that transform these principles into practical algorithms. Following a presentation of the basics, the book covers a wide array of central topics unaddressed by previous textbooks. These include a discussion of the computational complexity of learning and the concepts of convexity and stability; important algorithmic paradigms including stochastic gradient descent, neural networks, and structured output learning; and emerging theoretical concepts such as the PAC-Bayes approach and compression-based bounds. Designed for advanced undergraduates or beginning graduates, the text makes the fundamentals and algorithms of machine learning accessible to students and non-expert readers in statistics, computer science, mathematics and engineering.

Allen B. Downey ... 210 pages - Publisher: O'Reilly Media; (October, 2013) ... Language: English - ISBN-10: 1449370780 - ISBN-13: 978-1449370787.

If you know how to program with Python and also know a little about probability, you’re ready to tackle Bayesian statistics. With this book, you'll learn how to solve statistical problems with Python code instead of mathematical notation, and use discrete probability distributions instead of continuous mathematics. Once you get the math out of the way, the Bayesian fundamentals will become clearer, and you’ll begin to apply these techniques to real-world problems. Bayesian statistical methods are becoming more common and more important, but not many resources are available to help beginners. Based on undergraduate classes taught by author Allen Downey, this book’s computational approach helps you get a solid start. Use your existing programming skills to learn and understand Bayesian statistics + Work with problems involving estimation, prediction, decision analysis, evidence, and hypothesis testing + Get started with simple examples, using coins, M&Ms, Dungeons & Dragons dice, paintball, and hockey + Learn computational methods for solving real-world problems, such as interpreting SAT scores, simulating kidney tumors, and modeling the human microbiome.

Sorin Draghici ... 1036 pages - Publisher: Chapman and Hall/CRC; 2nd edition (April, 2016) ... Language: English - ASIN: B00O5D331Q by Amazon.

Richly illustrated in color, Statistics and Data Analysis for Microarrays Using R and Bioconductor, Second Edition provides a clear and rigorous description of powerful analysis techniques and algorithms for mining and interpreting biological information. Omitting tedious details, heavy formalisms, and cryptic notations, the text takes a hands-on, example-based approach that teaches students the basics of R and microarray technology as well as how to choose and apply the proper data analysis tool to specific problems.

New to the Second Edition: Completely updated and double the size of its predecessor, this timely second edition replaces the commercial software with the open source R and Bioconductor environments. Fourteen new chapters cover such topics as the basic mechanisms of the cell, reliability and reproducibility issues in DNA microarrays, basic statistics and linear models in R, experiment design, multiple comparisons, quality control, data pre-processing and normalization, Gene Ontology analysis, pathway analysis, and machine learning techniques. Methods are illustrated with toy examples and real data and the R code for all routines is available on an accompanying CD-ROM. With all the necessary prerequisites included, this best-selling book guides students from very basic notions to advanced analysis techniques in R and Bioconductor. The first half of the text presents an overview of microarrays and the statistical elements that form the building blocks of any data analysis. The second half introduces the techniques most commonly used in the analysis of microarray data.

I’m very glad to have opportunity to teach you one of the most popular and powerful optimization algorithms in this course.

If you search FireFly optimization algorithm in google scholar, it could be seen that there are many vast range of papers has been published by implementing this optimization algorithm in different fields of science. In this course, after presenting the mathematical concept of each part of the considered optimization algorithm, I write its code immediately in matlab. All of the written codes are available, however, I strongly suggest to write the codes with me. Notice that, if you don’t have matlab or you know another programming language, don’t worry at all. You can simply write the codes in your own programming language because the behind concepts about all of the written codes are presented completely.

Alma Y. Alanis, Nancy Arana-Daniel, Carlos Lopez-Franco ... 176 pages - Publisher: Academic Press; (February, 2019) ... Language: English - ASIN: B07NGPX9MF by Amazon.

Artificial Neural Networks for Engineering Applications presents current trends for the solution of complex engineering problems that cannot be solved through conventional methods. The proposed methodologies can be applied to modeling, pattern recognition, classification, forecasting, estimation, and more. Readers will find different methodologies to solve various problems, including complex nonlinear systems, cellular computational networks, waste water treatment, attack detection on cyber-physical systems, control of UAVs, biomechanical and biomedical systems, time series forecasting, biofuels, and more. Besides the real-time implementations, the book contains all the theory required to use the proposed methodologies for different applications.Presents the current trends for the solution of complex engineering problems that cannot be solved through conventional methods + Includes real-life scenarios where a wide range of artificial neural network architectures can be used to solve the problems encountered in engineering + Contains all the theory required to use the proposed methodologies for different applications

Luca Oneto, Nicolò Navarin, Alessandro Sperduti, Davide Anguita ... 403 pages - Publisher: Springer; (April, 2019) ... Language: English - ASIN: B07QD8SLQ4 by Amazon.

This book presents the original articles that have been accepted in the 2019 INNS Big Data and Deep Learning (INNS BDDL) international conference, a major event for researchers in the field of artificial neural networks, big data and related topics, organized by the International Neural Network Society and hosted by the University of Genoa. In 2019 INNS BDDL has been held in Sestri Levante (Italy) from April 16 to April 18. More than 80 researchers from 20 countries participated in the INNS BDDL in April 2019. In addition to regular sessions, INNS BDDL welcomed around 40 oral communications, 6 tutorials have been presented together with 4 invited plenary speakers. This book covers a broad range of topics in big data and deep learning, from theoretical aspects to state-of-the-art applications. This book is directed to both Ph.D. students and Researchers in the field in order to provide a general picture of the state-of-the-art on the topics addressed by the conference.

Rajesh Kumar Arora ... 466 pages - Publisher: Chapman and Hall/CRC; (May, 2015) ... Language: English - ISBN-10: 1498721125 - ISBN-13: 978-1498721127.

Choose the Correct Solution Method for Your Optimization Problem: Optimization: Algorithms and Applications presents a variety of solution techniques for optimization problems, emphasizing concepts rather than rigorous mathematical details and proofs. The book covers both gradient and stochastic methods as solution techniques for unconstrained and constrained optimization problems. It discusses the conjugate gradient method, Broyden–Fletcher–Goldfarb–Shanno algorithm, Powell method, penalty function, augmented Lagrange multiplier method, sequential quadratic programming, method of feasible directions, genetic algorithms, particle swarm optimization (PSO), simulated annealing, ant colony optimization, and tabu search methods. The author shows how to solve non-convex multi-objective optimization problems using simple modifications of the basic PSO code. The book also introduces multidisciplinary design optimization (MDO) architectures―one of the first optimization books to do so―and develops software codes for the simplex method and affine-scaling interior point method for solving linear programming problems. In addition, it examines Gomory’s cutting plane method, the branch-and-bound method, and Balas’ algorithm for integer programming problems. The author follows a step-by-step approach to developing the MATLAB® codes from the algorithms. He then applies the codes to solve both standard functions taken from the literature and real-world applications, including a complex trajectory design problem of a robot, a portfolio optimization problem, and a multi-objective shape optimization problem of a reentry body. This hands-on approach improves your understanding and confidence in handling different solution methods. The MATLAB codes are available on the book’s CRC Press web page.

Witold Pedrycz, Shyi-Ming Chen ... 292 pages - Publisher: Springer; (November, 2019) ... Language: English - ASIN: B07ZX66TYJ by Amazon.

This book offers a timely reflection on the remarkable range of algorithms and applications that have made the area of deep learning so attractive and heavily researched today. Introducing the diversity of learning mechanisms in the environment of big data, and presenting authoritative studies in fields such as sensor design, health care, autonomous driving, industrial control and wireless communication, it enables readers to gain a practical understanding of design. The book also discusses systematic design procedures, optimization techniques, and validation processes.

Collins Achepsah Leke, T. Marwala ... 179 pages - Publisher: Springer; (December, 2018) ... Language: English - AmazonSIN: B07LD4XHTL.

Deep Learning and Missing Data in Engineering Systems uses deep learning and swarm intelligence methods to cover missing data estimation in engineering systems. The missing data estimation processes proposed in the book can be applied in image recognition and reconstruction. To facilitate the imputation of missing data, several artificial intelligence approaches are presented, including: deep autoencoder neural networks; deep denoising autoencoder networks; the bat algorithm; the cuckoo search algorithm; and the firefly algorithm. The hybrid models proposed are used to estimate the missing data in high-dimensional data settings more accurately. Swarm intelligence algorithms are applied to address critical questions such as model selection and model parameter estimation. The authors address feature extraction for the purpose of reconstructing the input data from reduced dimensions by the use of deep autoencoder neural networks. They illustrate new models diagrammatically, report their findings in tables, so as to put their methods on a sound statistical basis. The methods proposed speed up the process of data estimation while preserving known features of the data matrix. This book is a valuable source of information for researchers and practitioners in data science. Advanced undergraduate and postgraduate students studying topics in computational intelligence and big data, can also use the book as a reference for identifying and introducing new research thrusts in missing data estimation.

Hisham El-Amir, Mahmoud Hamdy ... 551 pages - Publisher: Apress; (December, 2019) ... Language: English - ASIN: B082ZL1D59 by Amazon.

Build your own pipeline based on modern TensorFlow approaches rather than outdated engineering concepts. This book shows you how to build a deep learning pipeline for real-life TensorFlow projects. You'll learn what a pipeline is and how it works so you can build a full application easily and rapidly. Then troubleshoot and overcome basic Tensorflow obstacles to easily create functional apps and deploy well-trained models. Step-by-step and example-oriented instructions help you understand each step of the deep learning pipeline while you apply the most straightforward and effective tools to demonstrative problems and datasets. You'll also develop a deep learning project by preparing data, choosing the model that fits that data, and debugging your model to get the best fit to data all using Tensorflow techniques. Enhance your skills by accessing some of the most powerful recent trends in data science. If you've ever considered building your own image or text-tagging solution or entering a Kaggle contest, Deep Learning Pipeline is for you!

What You'll Learn: Develop a deep learning project using data + Study and apply various models to your data + Debug and troubleshoot the proper model suited for your data.

Witold Pedrycz, Shyi-Ming Chen ... 360 pages - Publisher: Springer; (October, 2019) ... Language: English - ASIN: B07ZMY46RV by Amazon.

This book presents a wealth of deep-learning algorithms and demonstrates their design process. It also highlights the need for a prudent alignment with the essential characteristics of the nature of learning encountered in the practical problems being tackled. Intended for readers interested in acquiring practical knowledge of analysis, design, and deployment of deep learning solutions to real-world problems, it covers a wide range of the paradigm’s algorithms and their applications in diverse areas including imaging, seismic tomography, smart grids, surveillance and security, and health care, among others. Featuring systematic and comprehensive discussions on the development processes, their evaluation, and relevance, the book offers insights into fundamental design strategies for algorithms of deep learning.

Radek Silhavy ... 501 pages - Publisher: Springer; (May, 2018) ... Language: English - ASIN: B07DBK5RFZ by Amazon.

This book presents the latest trends and approaches in artificial intelligence research and its application to intelligent systems. It discusses hybridization of algorithms, new trends in neural networks, optimisation algorithms and real-life issues related to the application of artificial methods. The book constitutes the second volume of the refereed proceedings of the Artificial Intelligence and Algorithms in Intelligent Systems of the 7th Computer Science On-line Conference 2018 (CSOC 2018), held online in April 2018.

Thi Thi Zin, Jerry Chun-Wei Lin ... 400 pages - Publisher: Springer; (June, 2018) ... Language: English - ASIN: B07DL46RJX by Amazon.

This book presents a compilation of selected papers from the first International Conference on Big Data Analysis and Deep Learning Applications (ICBDL 2018), and focuses on novel techniques in the fields of big data analysis, machine learning, system monitoring, image processing, conventional neural networks, communication, industrial information, and their applications. Readers will find insights to help them realize more efficient algorithms and systems used in real-life applications and contexts, making the book an essential reference guide for academic researchers, professionals, software engineers in the industry, and regulators of aviation authorities.

Contact Form


Email *

Message *

Theme images by blue_baron. Powered by Blogger.