Articles by "Artificial Intelligence"

2SI AASHTO Abaqus Actix Analyzer ADINA Adobe Acrobat Airports AISC Algorithms Aluminium Animation ANSYS APF Nexus Aquaveo Architecture Artificial Intelligence ASCE ASDIP Ashampoo Asphalt ASTM Autocad Autodesk Bentley BetonExpress BIMware MASTER BitCoin Blast Books Bridges Buildings CAD Calculus CCleaner Cement Chasm Consulting Civil 3D Clay Coastal Structures Codes ComingSoon Computer Engineering Concrete Conference Books CorelCAD Corrosion Courses/Lessons Cranes CSI CTI Vespa2 Daemon Tools Dams Data Analysis Data Mining Deep Freeze Deep Learning Design and Build Websites DiCad Strakon Dictionary Digital Canal DimSoln Dlubal Drainage Dredging Dynamics Earthquake Earthworks EC2 Reinforcement EC3 Steel Connections EC5 Timber Connections Economy Elasticity EnerCalc English Language Ensoft Entertainment Environmental Engineering Equipments Erosion ESPRI ETABS Eurocode Excavation Excel Expansive Soils FIDES DV-Partner Finite Element Model Fire Safety Fluid Mechanics Forensic Engineering Formulas Fortran Foundations Foxit Phantom FRP Game of Thrones Geo-Slope Geo5 Geoenvironmental Engineering Geographic Information Systems Geology Geomechanics Geomembranes Geosolve GeoStru GeoStudio Geosynthetics GeoTec Elpla Geotechnical Engineering Golden Software Graitec Grammar Grapher Ground Anchors Groundwater Grouting Gstarsoft Harry Potter Highways Historic Structures HTML5 Hydraulics Hydrology IBM IceCream Ebook Reader IDEA StatiCa IELTS IES Ikon Science InfraWorks Itasca Flac2D Java KESZ ConSteel Landslides LaTeX Limcon LimitState: GEO Lindo Linear Algebra Lingo Liquefaction LPile Lusas Malwarbytes Management Maple MapViewer Masonry Walls Materials Mathematica Maths MathType MATLAB Mechanical Engineering Mechanics Metaheuristic Algorithms Microsoft MicroStation Midas Minitab Money Movies Nanocomposites Neural Networks NovoTech Nuclear Power Plants Numerical Mathematics OaSys Octave Office Offshore OLGA Optimization Pavements PC Games PDF Phase2 Physics Piles PipeLines Pipesim Plants Plasticity Plaxis Polymath Polymer Power GEOPAK Powerpoint Precast Prestressed Concrete Pro Sap Proektsoft Programming Projects PROKON ProStructures ProtaStructure PTC MathCad Python QuickConcreteWall QuickConcretWall QuickFooting QuickMasonary QuickRWall R Language Radar System Railways RAM RCDC Regression Analysis Reinforced Concrete Reinforced Masonry Retaining Structures RetainPro Revit RISA Risk Analysis Roads RocDoc Rock Mechanics Rocscience Roofs S-Frame S.T.A. DATA 3Muri SAFE Safety Salford Predictive Modeler SAP2000 SCAD Office Schedule it Schlumberger SCIA Engineer Security Seepage Settle 3D Sewage ShapeBuilder Shotcrete Slide Slope Stability Sludge Smart Cities Snow Loads Softwares Soil Improvement Soil Mechanics SoilOffice SoilWorks SPSS STAAD.Foundation STAAD.Pro Standards Stat-Ease Stata Statics Statistics Steel Stone Strater StruCalc Structural Designer Structural Office StructurePoint Structures StruSoft Surfer Surveying Swarm Intelligence System Mechanic Tableau Technical Drawing Technology Tedds Tekla Testing The Big Bang Theory Thermodynamics Timber TOEFL Topology Torrent Traffic Transmission Lines Transportation Engineering Trimble Tunnels Turbo Pascal TV Series TweakBit Unsaturated Visual Basic Visual Integrity VisualAnalysis VisualFoundation VisualPlate VisualShearWall Water Welding Wind Loads Windows WinRAR Wolfram Wood Word
Showing posts with label Artificial Intelligence. Show all posts

Artificial Neural Networks: Understand The Basic Concepts [Size: 285 MB] ... Artificial Intelligence is becoming progressively more relevant in today’s world. The rise of Artificial intelligence has the potential to transform our future more than any other technology. By using the power of algorithms, you can develop applications which intelligently interact with the world around you, from building intelligent recommender systems to creating self-driving cars, robots and chatbots. Neural networks are a key element of artificial intelligence.

Neural networks are one of the most fascinating machine learning models and are used to solve wide range of problems in different areas of artificial intelligence and machine learning. Yet too few really understand how neural networks actually work. This course will take you on a fun and unhurried journey, starting from very simple ideas, and gradually building up an understanding of how neural networks work. The purpose of this course is to make neural networks accessible to as many students as possible.

In this course I’m going to explain the key aspects of neural networks and provide you with a foundation to get started with advanced topics. You will build a solid foundation knowledge of how a neural network learns from data, and the principles behind it. You will not only learn how to train neural networks, but will also explore generalization of these networks. Later we will delve into combining different neural network models and work with the real-world use cases. You’ll understand how to solve complex computational problems efficiently.

Marco Dorigo, Thomas Stützle ... 319 pages - Publisher: Bradford Book; (June, 2004) ... Language: English - ISBN-10: 0262042193 - ISBN-13: 978-0262042192

The complex social behaviors of ants have been much studied by science, and computer scientists are now finding that these behavior patterns can provide models for solving difficult combinatorial optimization problems. The attempt to develop algorithms inspired by one aspect of ant behavior, the ability to find what computer scientists would call shortest paths, has become the field of ant colony optimization (ACO), the most successful and widely recognized algorithmic technique based on ant behavior. This book presents an overview of this rapidly growing field, from its theoretical inception to practical applications, including descriptions of many available ACO algorithms and their uses. The book first describes the translation of observed ant behavior into working optimization algorithms. The ant colony metaheuristic is then introduced and viewed in the general context of combinatorial optimization. This is followed by a detailed description and guide to all major ACO algorithms and a report on current theoretical findings. The book surveys ACO applications now in use, including routing, assignment, scheduling, subset, machine learning, and bioinformatics problems. AntNet, an ACO algorithm designed for the network routing problem, is described in detail. The authors conclude by summarizing the progress in the field and outlining future research directions. Each chapter ends with bibliographic material, bullet points setting out important ideas covered in the chapter, and exercises. Ant Colony Optimization will be of interest to academic and industry researchers, graduate students, and practitioners who wish to learn how to implement ACO algorithms.

Artificial Intelligence Masterclass: Enter the new era of Hybrid AI Models optimized by Deep NeuroEvolution, with a complete toolkit of ML, DL & AI Models [Size: 6.10 GB] ... Are you keen on Artificial Intelligence? Do want to learn to build the most powerful AI model developed so far and even play against it? Sounds tempting right… Then Artificial Intelligence Masterclass course is the right choice for you. This ultimate AI toolbox is all you need to nail it down with ease. You will get 10 hours step by step guide and the full roadmap which will help you build your own Hybrid AI Model from scratch. In this course, we will teach you how to develop the most powerful Artificial intelligence model based on the most robust Hybrid Intelligent System. So far this model proves to be the best state of the art AI ever created beating its predecessors at all the AI competitions with incredibly high scores. This Hybrid Model is aptly named the Full World Model, and it combines all the state of the art models of the different AI branches, including Deep Learning, Deep Reinforcement Learning, Policy Gradient, and even, Deep NeuroEvolution. Learn how to combine the below models in order to achieve best performing artificial intelligence system: Fully-Connected Neural Networks + Convolutional Neural Networks + Recurrent Neural Networks + Variational AutoEncoders + Mixed Density Networks + Genetic Algorithms + Evolution Strategies + Covariance Matrix Adaptation Evolution Strategy (CMA-ES) + Parameter-Exploring Policy Gradients.

Jan Romportl, Eva Zackova, Jozef Kelemen ... 219 pages - Publisher: Springer; (August, 2014) ... Language: English - ISBN-10: 3319096672 - ISBN-13: 978-3319096674

This book is an edited collection of chapters based on the papers presented at the conference “Beyond AI: Artificial Dreams” held in Pilsen in November 2012. The aim of the conference was to question deep-rooted ideas of artificial intelligence and cast critical reflection on methods standing at its foundations. Artificial Dreams epitomize our controversial quest for non-biological intelligence and therefore the contributors of this book tried to fully exploit such a controversy in their respective chapters, which resulted in an interdisciplinary dialogue between experts from engineering, natural sciences and humanities. While pursuing the Artificial Dreams, it has become clear that it is still more and more difficult to draw a clear divide between human and machine. And therefore this book tries to portrait such an image of what lies beyond artificial intelligence: we can see the disappearing human-machine divide, a very important phenomenon of nowadays technological society, the phenomenon which is often uncritically praised, or hypocritically condemned. And so this phenomenon found its place in the subtitle of the whole volume as well as in the title of the chapter of Kevin Warwick, one of the keynote speakers at “Beyond AI: Artificial Dreams”.

The topics in this course come from an analysis of real requirements in data scientist job listings from the biggest tech employers. We'll cover the machine learning, AI, and data mining techniques real employers are looking for, including: Deep Learning / Neural Networks (MLP's, CNN's, RNN's) with TensorFlow and Keras + Sentiment analysis + Image recognition and classification + Regression analysis + K-Means Clustering + Principal Component Analysis + Train/Test and cross validation + Bayesian Methods + Decision Trees and Random Forests + Multivariate Regression + Multi-Level Models + Support Vector Machines + Reinforcement Learning + Collaborative Filtering + K-Nearest Neighbor + Bias/Variance Tradeoff + Ensemble Learning + Term Frequency / Inverse Document Frequency + Experimental Design and A/B Tests.

Mauro Castelli, L. Sekanina, M. Zhang, S. Cagnoni, P. García-Sánchez ... 323 pages - Publisher: Springer; (April, 2018) ... Language: English - ISBN-10: 3319775529 - ISBN-13: 978-3319775524 ...

This book constitutes the refereed proceedings of the 21st European Conference on Genetic Programming, EuroGP 2018, held in Parma, Italy, in April 2018, co-located with the Evo* 2018 events, EvoCOP, EvoMUSART, and EvoApplications. The 11 revised full papers presented together with 8 poster papers were carefully reviewed and selected from 36 submissions. The wide range of topics in this volume reflects the current state of research in the field. Thus, we see topics and applications including analysis of feature importance for metabolomics, semantic methods, evolution of boolean networks, generation of redundant features, ensembles of GP models, automatic design of grammatical representations, GP and neuroevolution, visual reinforcement learning, evolution of deep neural networks, evolution of graphs, and scheduling in heterogeneous networks.

Giuseppe Ciaburro, Balaji Venkateswaran ... 270 pages - Publisher: Packt Publishing; (September, 2017) ... Language: English - ISBN-10: 1788397878 - ISBN-13: 978-1788397872 ...

Neural networks are one of the most fascinating machine learning models for solving complex computational problems efficiently. Neural networks are used to solve wide range of problems in different areas of AI and machine learning. This book explains the niche aspects of neural networking and provides you with foundation to get started with advanced topics. The book begins with neural network design using the neural net package, then you'll build a solid foundation knowledge of how a neural network learns from data, and the principles behind it. This book covers various types of neural network including recurrent neural networks and convoluted neural networks. You will not only learn how to train neural networks, but will also explore generalization of these networks. Later we will delve into combining different neural network models and work with the real-world use cases. By the end of this book, you will learn to implement neural network models in your applications with the help of practical examples in the book.

S. Chakraverty, Susmita Mall ... 157 pages - Publisher: CRC Press; 1st edition (July, 2017) ... Language: English - ASIN: B0744Q3RW2 by Amazon ...

Differential equations play a vital role in the fields of engineering and science. Problems in engineering and science can be modeled using ordinary or partial differential equations. Analytical solutions of differential equations may not be obtained easily, so numerical methods have been developed to handle them. Machine intelligence methods, such as Artificial Neural Networks (ANN), are being used to solve differential equations, and these methods are presented in Artificial Neural Networks for Engineers and Scientists: Solving Ordinary Differential Equations. This book shows how computation of differential equation becomes faster once the ANN model is properly developed and applied.

Li Deng, Dong Yu ... 212 pages - Publisher: Now Publishers; (June, 2014) ... Language: English - ISBN-10: 1601988141 - ISBN-13: 978-1601988140 ...

Deep Learning: Methods and Applications provides an overview of general deep learning methodology and its applications to a variety of signal and information processing tasks. The application areas are chosen with the following three criteria in mind: (1) expertise or knowledge of the authors; (2) the application areas that have already been transformed by the successful use of deep learning technology, such as speech recognition and computer vision; and (3) the application areas that have the potential to be impacted significantly by deep learning and that have been benefitting from recent research efforts, including natural language and text processing, information retrieval, and multimodal information processing empowered by multi-task deep learning. Deep Learning: Methods and Applications is a timely and important book for researchers and students with an interest in deep learning methodology and its applications in signal and information processing.

Amir Hossein Gandomi, Xin-She Yang, Siamak Talatahari, Amir Hossein Alavi ... 568 pages - Publisher: Elsevier; (February, 2013) ... Language: English - ISBN-10: 0123983649 - ISBN-13: 978-0123983640

Due to an ever-decreasing supply in raw materials and stringent constraints on conventional energy sources, demand for lightweight, efficient and low-cost structures has become crucially important in modern engineering design. This requires engineers to search for optimal and robust design options to address design problems that are commonly large in scale and highly nonlinear, making finding solutions challenging. In the past two decades, metaheuristic algorithms have shown promising power, efficiency and versatility in solving these difficult optimization problems. This book examines the latest developments of metaheuristics and their applications in structural engineering, construction engineering and earthquake engineering, offering practical case studies as examples to demonstrate real-world applications. Topics cover a range of areas within engineering, including big bang-big crunch approach, genetic algorithms, genetic programming, harmony search, swarm intelligence and some other metaheuristic methods. Case studies include structural identification, vibration analysis and control, topology optimization, transport infrastructure design, design of reinforced concrete, performance-based design of structures and smart pavement management. With its wide range of everyday problems and solutions, Metaheursitic Applications in Structures and Infrastructures can serve as a supplementary text for design courses and computation in engineering as well as a reference for researchers and engineers in metaheuristics, optimization in civil engineering and computational intelligence. * Review of the latest development of metaheuristics in engineering. * Detailed algorithm descriptions with focus on practical implementation. * Uses practical case studies as examples and applications.

A Boltzmann machine is a network of symmetrically connected, neuron-like units that make stochastic decisions about whether to be on or off. Boltzmann machines have a simple learning algorithm that allows them to discover interesting features that represent complex regularities in the training data. The learning algorithm is very slow in networks with many layers of feature detectors, but it is fast in "restricted Boltzmann machines" that have a single layer of feature detectors. Many hidden layers can be learned efficiently by composing restricted Boltzmann machines, using the feature activations of one as the training data for the next. Boltzmann machines are used to solve two quite different computational problems. For a search problem, the weights on the connections are fixed and are used to represent a cost function. The stochastic dynamics of a Boltzmann machine then allow it to sample binary state vectors that have low values of the cost function. For a learning problem, the Boltzmann machine is shown a set of binary data vectors and it must learn to generate these vectors with high probability. To do this, it must find weights on the connections so that, relative to other possible binary vectors, the data vectors have low values of the cost function. To solve a learning problem, Boltzmann machines make many small updates to their weights, and each update requires them to solve many different search problems.

A recurrent neural network (RNN) is a type of advanced artificial neural network (ANN) that involves directed cycles in memory. One aspect of recurrent neural networks is the ability to build on earlier types of networks with fixed-size input vectors and output vectors. The use of recurrent neural networks are often related to deep learning and the use of sequences to evolve models that simulate the neural activity in the human brain. In terms of practical application, RNNs have been an active area of focus for many professionals for uses like image processing, language processing, and even models that add characters to text one at a time. By playing around with these text generation models, scientists have been able to produce samples that look a lot like different kinds of human writing – for example, modern investment op-eds, or classical Shakespeare plays. The RNN has been able to generate text results that demonstrate the ability to learn English from scratch, or from very limited programming inputs. Many examples of using RNNs produce text that is not grammatically correct. The idea is that a large number of these experiments and systems need additional supports to really become useful – but they do demonstrate amazing artificial intelligence power to model the human generation of language.

Convolutional networks (CNNs) are deep artificial neural networks that can be used to classify images (name what they see), cluster them by similarity (photo search), and perform object recognition within scenes. They are algorithms that can identify faces, individuals, street signs, eggplants, platypuses and many other aspects of visual data. Convolutional networks perform optical character recognition (OCR) to digitize text and make natural-language processing possible on analog and hand-written documents, where the images are symbols to be transcribed. CNNs can also be applied to sound when it is represented visually as a spectrogram. More recently, convolutional networks have been applied directly to text analytics as well as graph data with graph convolutional networks. The efficacy of convolutional nets (ConvNets or CNNs) in image recognition is one of the main reasons why the world has woken up to the efficacy of deep learning. They are powering major advances in machine vision, which has obvious applications for self-driving cars, robotics, drones, security, medical diagnoses, and treatments for the visually impaired.

Neural networks are a set of algorithms, modeled loosely after the human brain, that are designed to recognize patterns. They interpret sensory data through a kind of machine perception, labeling or clustering raw input. The patterns they recognize are numerical, contained in vectors, into which all real-world data, be it images, sound, text or time series, must be translated. Neural networks help us cluster and classify. You can think of them as a clustering and classification layer on top of data you store and manage. They help to group unlabeled data according to similarities among the example inputs, and they classify data when they have a labeled dataset to train on. (To be more precise, neural networks extract features that are fed to other algorithms for clustering and classification; so you can think of deep neural networks as components of larger machine-learning applications involving algorithms for reinforcement learning, classification and regression.)

Max Tegmark ... 384 pages - Publisher: Knopf; (August, 2017) ... Language: English - ISBN-10: 1101946598 - ISBN-13: 978-1101946596 ... 

How will Artificial Intelligence affect crime, war, justice, jobs, society and our very sense of being human? The rise of AI has the potential to transform our future more than any other technology—and there’s nobody better qualified or situated to explore that future than Max Tegmark, an MIT professor who’s helped mainstream research on how to keep AI beneficial. How can we grow our prosperity through automation without leaving people lacking income or purpose? What career advice should we give today’s kids? How can we make future AI systems more robust, so that they do what we want without crashing, malfunctioning or getting hacked? Should we fear an arms race in lethal autonomous weapons? Will machines eventually outsmart us at all tasks, replacing humans on the job market and perhaps altogether? Will AI help life flourish like never before or give us more power than we can handle? What sort of future do you want? This book empowers you to join what may be the most important conversation of our time. It doesn’t shy away from the full range of viewpoints or from the most controversial issues—from superintelligence to meaning, consciousness and the ultimate physical limits on life in the cosmos.

Gayle Cain ... 229 pages - Publisher: Nova Science Pub.; (January, 2017) ... Language: English - ISBN-10: 1634859642 - ISBN-13: 978-1634859646 ...

This current book provides new research on artificial neural networks (ANNs). Topics discussed include the application of ANNs in chemistry and chemical engineering fields; the application of ANNs in the prediction of biodiesel fuel properties from fatty acid constituents; the use of ANNs for solar radiation estimation; the use of in silico methods to design and evaluate skin UV filters; a practical model based on the multilayer perceptron neural network (MLP) approach to predict the milling tool flank wear in a regular cut, as well as entry cut and exit cut, of a milling tool; parameter extraction of small-signal and noise models of microwave transistors based on ANNs; and the application of ANNs to deep-learning and predictive analysis in semantic TCM telemedicine systems.

Rajendra Akerkar, Priti Srinivas Sajja ... 272 pages - Publisher: Springer; 1st edition (October, 2016) ... Language: English - ISBN-10: 3319292056 - ISBN-13: 978-3319292052 ...

This textbook provides readers with the tools, techniques and cases required to excel with modern artificial intelligence methods. These embrace the family of neural networks, fuzzy systems and evolutionary computing in addition to other fields within machine learning, and will help in identifying, visualizing, classifying and analyzing data to support business decisions. The authors, discuss advantages and drawbacks of different approaches, and present a sound foundation for the reader to design and implement data analytic solutions for real‐world applications in an intelligent manner. Intelligent Techniques for Data Science also provides real-world cases of extracting value from data in various domains such as retail, health, aviation, telecommunication and tourism.

Luis Rabelo,‎ Sayli Bhide,‎ Edgar Gutierrez ... 350 pages - Publisher: Nova Science; (February, 2018) ... Language: English - ISBN-10: 1536126772 - ISBN-13: 978-1536126778

After decades of basic research and more promises than impressive applications, artificial intelligence (AI) is starting to deliver benefits. Organizations around the world have been realizing that there are substantial performance gains and increases in productivity for the use of AI and predictive analytics techniques. Their use is bringing a new era of breakthrough innovation and opportunities. This book, compiles research insights and applications in diverse areas such as manufacturing, supply chain management, pricing, autonomous vehicles, healthcare, ecommerce, and aeronautics. Using classical and advanced tools in AI such as deep learning, particle swarm optimization, support vector machines and genetic programming among others. This is a very distinctive book which discusses important applications using a variety of paradigms from AI and outlines some of the research to be performed. The work supersedes similar books that do not cover as diversified a set of sophisticated applications. The authors present a comprehensive and articulated view of recent developments, identifies the applications gap by quoting from the experience of experts, and details suggested research areas. Artificial Intelligence: Advances in Research and Applications guides the reader through an intuitive understanding of the methodologies and tools for building and modeling intelligent systems. The book's coverage is broad, starting with clustering techniques with unsupervised ensemble learning, where the optimal combination strategy of individual partitions is robust in comparison to the selection of an algorithmic clustering pool. The book discusses how the use of AI can allow for productivity development and other benefits not just for businesses, but also for economies. Finally, you can find an interesting investigation of the "transhuman" dimension of AI. (Nova)

Josh Patterson, Adam Gibson ... 532 pages - Publisher: O'Reilly Media; 1st edition (August, 2017) - Language: English - ISBN-10: 1491914254 - ISBN-13: 978-1491914250 ...

Although interest in machine learning has reached a high point, lofty expectations often scuttle projects before they get very far. How can machine learning—especially deep neural networks—make a real difference in your organization? This hands-on guide not only provides the most practical information available on the subject, but also helps you get started building efficient deep learning networks. Authors Adam Gibson and Josh Patterson provide theory on deep learning before introducing their open-source Deeplearning4j (DL4J) library for developing production-class workflows. Through real-world examples, you’ll learn methods and strategies for training deep network architectures and running deep learning workflows on Spark and Hadoop with DL4J. Dive into machine learning concepts in general, as well as deep learning in particular + Understand how deep networks evolved from neural network fundamentals + Explore the major deep network architectures, including Convolutional and Recurrent + Learn how to map specific deep networks to the right problem + Walk through the fundamentals of tuning general neural networks and specific deep network architectures + Use vectorization techniques for different data types with DataVec, DL4J’s workflow tool + Learn how to use DL4J natively on Spark and Hadoop.

Particle swarm optimization (PSO) is a population-based stochastic approach for solving continuous and discrete optimization problems. In particle swarm optimization, simple software agents, called particles, move in the search space of an optimization problem. The position of a particle represents a candidate solution to the optimization problem at hand. Each particle searches for better positions in the search space by changing its velocity according to rules originally inspired by behavioral models of bird flocking. Particle swarm optimization belongs to the class of swarm intelligence techniques that are used to solve optimization problems.

Contact Form


Email *

Message *

Theme images by blue_baron. Powered by Blogger.