Articles by "Optimization"

Showing posts with label Optimization. Show all posts

Mykel J. Kochenderfer, Tim A. Wheeler ... 520 pages - Publisher: The MIT Press; (March, 2019) ... Language: English - ISBN-10: 0262039427 - ISBN-13: 978-0262039420.

A comprehensive introduction to optimization with a focus on practical algorithms for the design of engineering systems: This book offers a comprehensive introduction to optimization with a focus on practical algorithms. The book approaches optimization from an engineering perspective, where the objective is to design a system that optimizes a set of metrics subject to constraints. Readers will learn about computational approaches for a range of challenges, including searching high-dimensional spaces, handling problems where there are multiple competing objectives, and accommodating uncertainty in the metrics. Figures, examples, and exercises convey the intuition behind the mathematical approaches. The text provides concrete implementations in the Julia programming language. Topics covered include derivatives and their generalization to multiple dimensions; local descent and first- and second-order methods that inform local descent; stochastic methods, which introduce randomness into the optimization process; linear constrained optimization, when both the objective function and the constraints are linear; surrogate models, probabilistic surrogate models, and using probabilistic surrogate models to guide optimization; optimization under uncertainty; uncertainty propagation; expression optimization; and multidisciplinary design optimization. Appendixes offer an introduction to the Julia language, test functions for evaluating algorithm performance, and mathematical concepts used in the derivation and analysis of the optimization methods discussed in the text. The book can be used by advanced undergraduates and graduate students in mathematics, statistics, computer science, any engineering field, (including electrical engineering and aerospace engineering), and operations research, and as a reference for professionals.

Naiyang Deng, Yingjie Tian, Chunhua Zhang ... 363 pages - Publisher: Chapman and Hall/CRC; (December, 2012) ... Language: English - AmazonSIN: B00OD4GXCI.

Support Vector Machines: Optimization Based Theory, Algorithms, and Extensions presents an accessible treatment of the two main components of support vector machines (SVMs)—classification problems and regression problems. The book emphasizes the close connection between optimization theory and SVMs since optimization is one of the pillars on which SVMs are built. The authors share insight on many of their research achievements. They give a precise interpretation of statistical leaning theory for C-support vector classification. They also discuss regularized twin SVMs for binary classification problems, SVMs for solving multi-classification problems based on ordinal regression, SVMs for semi-supervised problems, and SVMs for problems with perturbations. To improve readability, concepts, methods, and results are introduced graphically and with clear explanations. For important concepts and algorithms, such as the Crammer-Singer SVM for multi-class classification problems, the text provides geometric interpretations that are not depicted in current literature. Enabling a sound understanding of SVMs, this book gives beginners as well as more experienced researchers and engineers the tools to solve real-world problems using SVMs.

Anand J. Kulkarni, Suresh Chandra Satapathy ... 197 pages - Publisher: Springer; (November, 2019) ... Language: English - AmazonSIN: B0825P5H9C.

This book discusses one of the major applications of artificial intelligence: the use of machine learning to extract useful information from multimodal data. It discusses the optimization methods that help minimize the error in developing patterns and classifications, which further helps improve prediction and decision-making. The book also presents formulations of real-world machine learning problems, and discusses AI solution methodologies as standalone or hybrid approaches. Lastly, it proposes novel metaheuristic methods to solve complex machine learning problems. Featuring valuable insights, the book helps readers explore new avenues leading toward multidisciplinary research discussions.

Fouad Bennis, Rajib Kumar Bhattacharjya ... 502 pages - Publisher: Springer; (January, 2020) ... Language: English - ASIN: B0843NX5CT.

This book gathers together a set of chapters covering recent development in optimization methods that are inspired by nature. The first group of chapters describes in detail different meta-heuristic algorithms, and shows their applicability using some test or real-world problems. The second part of the book is especially focused on advanced applications and case studies. They span different engineering fields, including mechanical, electrical and civil engineering, and earth/environmental science, and covers topics such as robotics, water management, process optimization, among others. The book covers both basic concepts and advanced issues, offering a timely introduction to nature-inspired optimization method for newcomers and students, and a source of inspiration as well as important practical insights to engineers and researchers.

Mircea Ancau ... 295 pages - Publisher: Cambridge Scholars Publishing; (November, 2019) ... Language: English - ISBN-10: 1527538494 - ISBN-13: 978-1527538498.

A comprehensive introduction to optimization with a focus on practical algorithms for the design of engineering systems: This book offers a comprehensive introduction to optimization with a focus on practical algorithms. The book approaches optimization from an engineering perspective, where the objective is to design a system that optimizes a set of metrics subject to constraints. Readers will learn about computational approaches for a range of challenges, including searching high-dimensional spaces, handling problems where there are multiple competing objectives, and accommodating uncertainty in the metrics. Figures, examples, and exercises convey the intuition behind the mathematical approaches. The text provides concrete implementations in the Julia programming language.

Nilanjan Dey ... 266 pages - Publisher: Springer; (November, 2019) ... Language: English - AmazonSIN: B0818MWNQJ.

The book discusses advantages of the firefly algorithm over other well-known metaheuristic algorithms in various engineering studies. The book provides a brief outline of various application-oriented problem solving methods, like economic emission load dispatch problem, designing a fully digital controlled reconfigurable switched beam nonconcentric ring array antenna, image segmentation, span minimization in permutation flow shop scheduling, multi-objective load dispatch problems, image compression, etc., using FA and its variants. It also covers the use of the firefly algorithm to select features, as research has shown that the firefly algorithm generates precise and optimal results in terms of time and optimality. In addition, the book also explores the potential of the firefly algorithm to provide a solution to traveling salesman problem, graph coloring problem, etc.

Ivan Nunes da Silva, Danilo Hernane Spatti ... 307 pages - Publisher: Springer; (August, 2016) - Language: English - ISBN-10: 3319431617 - ISBN-13: 978-3319431611 ...

This book provides comprehensive coverage of neural networks, their evolution, their structure, the problems they can solve, and their applications. The first half of the book looks at theoretical investigations on artificial neural networks and addresses the key architectures that are capable of implementation in various application scenarios. The second half is designed specifically for the production of solutions using artificial neural networks to solve practical problems arising from different areas of knowledge. It also describes the various implementation details that were taken into account to achieve the reported results. These aspects contribute to the maturation and improvement of experimental techniques to specify the neural network architecture that is most appropriate for a particular application scope. The book is appropriate for students in graduate and upper undergraduate courses in addition to researchers and professionals.

I’m very glad to have opportunity to teach you one of the most popular and powerful optimization algorithms in this course.

If you search FireFly optimization algorithm in google scholar, it could be seen that there are many vast range of papers has been published by implementing this optimization algorithm in different fields of science. In this course, after presenting the mathematical concept of each part of the considered optimization algorithm, I write its code immediately in matlab. All of the written codes are available, however, I strongly suggest to write the codes with me. Notice that, if you don’t have matlab or you know another programming language, don’t worry at all. You can simply write the codes in your own programming language because the behind concepts about all of the written codes are presented completely.

Rajesh Kumar Arora ... 466 pages - Publisher: Chapman and Hall/CRC; (May, 2015) ... Language: English - ISBN-10: 1498721125 - ISBN-13: 978-1498721127.

Choose the Correct Solution Method for Your Optimization Problem: Optimization: Algorithms and Applications presents a variety of solution techniques for optimization problems, emphasizing concepts rather than rigorous mathematical details and proofs. The book covers both gradient and stochastic methods as solution techniques for unconstrained and constrained optimization problems. It discusses the conjugate gradient method, Broyden–Fletcher–Goldfarb–Shanno algorithm, Powell method, penalty function, augmented Lagrange multiplier method, sequential quadratic programming, method of feasible directions, genetic algorithms, particle swarm optimization (PSO), simulated annealing, ant colony optimization, and tabu search methods. The author shows how to solve non-convex multi-objective optimization problems using simple modifications of the basic PSO code. The book also introduces multidisciplinary design optimization (MDO) architectures―one of the first optimization books to do so―and develops software codes for the simplex method and affine-scaling interior point method for solving linear programming problems. In addition, it examines Gomory’s cutting plane method, the branch-and-bound method, and Balas’ algorithm for integer programming problems. The author follows a step-by-step approach to developing the MATLAB® codes from the algorithms. He then applies the codes to solve both standard functions taken from the literature and real-world applications, including a complex trajectory design problem of a robot, a portfolio optimization problem, and a multi-objective shape optimization problem of a reentry body. This hands-on approach improves your understanding and confidence in handling different solution methods. The MATLAB codes are available on the book’s CRC Press web page.

Yogesh Jalria ... 614 pages - Publisher: CRC Press; 3rd edition (September, 2019) ... Language: English - ISBN-10: 1498778232 - ISBN-13: 978-1498778237.

Design and Optimization of Thermal Systems, Third Edition: with MATLAB® Applications provides systematic and efficient approaches to the design of thermal systems, which are of interest in a wide range of applications. It presents basic concepts and procedures for conceptual design, problem formulation, modeling, simulation, design evaluation, achieving feasible design, and optimization. Emphasizing modeling and simulation, with experimentation for physical insight and model validation, the third edition covers the areas of material selection, manufacturability, economic aspects, sensitivity, genetic and gradient search methods, knowledge-based design methodology, uncertainty, and other aspects that arise in practical situations. This edition features many new and revised examples and problems from diverse application areas and more extensive coverage of analysis and simulation with MATLAB®.

Seyedali Mirjalili, Jin Song Dong ... 72 pages - Publisher: Springer; (July, 2019) ... Language: English - ASIN: B07VLFKLHW by Amazon.

This book focuses on the most well-regarded and recent nature-inspired algorithms capable of solving optimization problems with multiple objectives. Firstly, it provides preliminaries and essential definitions in multi-objective problems and different paradigms to solve them. It then presents an in-depth explanations of the theory, literature review, and applications of several widely-used algorithms, such as Multi-objective Particle Swarm Optimizer, Multi-Objective Genetic Algorithm and Multi-objective GreyWolf Optimizer Due to the simplicity of the techniques and flexibility, readers from any field of study can employ them for solving multi-objective optimization problem. The book provides the source codes for all the proposed algorithms on a dedicated webpage.

Krishnanand N. Kaipa, Debasish Ghose ... 248 pages - Publisher: Springer; (January, 2017) ... Language: English - ASIN: B01N7R22Z8 by Amazon.

This book provides a comprehensive account of the glowworm swarm optimization (GSO) algorithm, including details of the underlying ideas, theoretical foundations, algorithm development, various applications, and MATLAB programs for the basic GSO algorithm. It also discusses several research problems at different levels of sophistication that can be attempted by interested researchers. The generality of the GSO algorithm is evident in its application to diverse problems ranging from optimization to robotics. Examples include computation of multiple optima, annual crop planning, cooperative exploration, distributed search, multiple source localization, contaminant boundary mapping, wireless sensor networks, clustering, knapsack, numerical integration, solving fixed point equations, solving systems of nonlinear equations, and engineering design optimization. The book is a valuable resource for researchers as well as graduate and undergraduate students in the area of swarm intelligence and computational intelligence and working on these topics.

Anand Nayyar, Dac-Nhuong Le, Nhu Gia Nguyen ... 314 pages - Publisher: Chapman and Hall/CRC; (October, 2018) ... Language: English - ASIN: B07HZS2JD8 by Amazon.

This book provides comprehensive details of all Swarm Intelligence based Techniques available till date in a comprehensive manner along with their mathematical proofs. It will act as a foundation for authors, researchers and industry professionals. This monograph will present the latest state of the art research being done on varied Intelligent Technologies like sensor networks, machine learning, optical fiber communications, digital signal processing, image processing and many more.

Zhen-Yu Yin, Yin-Fu Jin ... 356 pages - Publisher: Springer; (April, 2019) ... Language: English - ASIN: B07R6CD27W by Amazon.

This book presents the development of an optimization platform for geotechnical engineering, which is one of the key components in smart geotechnics. The book discusses the fundamentals of the optimization algorithm with constitutive models of soils. Helping readers easily understand the optimization algorithm applied in geotechnical engineering, this book first introduces the methodology of the optimization-based parameter identification, and then elaborates the principle of three newly developed efficient optimization algorithms, followed by the ideas of a variety of laboratory tests and formulations of constitutive models. Moving on to the application of optimization methods in geotechnical engineering, this book presents an optimization-based parameter identification platform with a practical and concise interface based on the above theories. The book is intended for undergraduate and graduate-level teaching in soil mechanics and geotechnical engineering and other related engineering specialties. It is also of use to industry practitioners, due to the inclusion of real-world applications, opening the door to advanced courses on both modeling and algorithm development within the industrial engineering and operations research fields.

Zacharias Voulgaris, Yunus Emrah Bulut ... 312 pages - Publisher: Technics Publications; (September, 2018) ... Language: English - ASIN: B07HJDNZL2 by Amazon.

Aspiring and practicing Data Science and AI professionals, along with Python and Julia programmers, will practice numerous AI algorithms and develop a more holistic understanding of the field of AI, and will learn when to use each framework to tackle projects in our increasingly complex world.  

The first two chapters introduce the field, with Chapter 1 surveying Deep Learning models and Chapter 2 providing an overview of algorithms beyond Deep Learning, including Optimization, Fuzzy Logic, and Artificial Creativity. The next chapters focus on AI frameworks; they contain data and Python and Julia code in a provided Docker, so you can practice. Chapter 3 covers Apache's MXNet, Chapter 4 covers TensorFlow, and Chapter 5 investigates Keras. After covering these Deep Learning frameworks, we explore a series of optimization frameworks, with Chapter 6 covering Particle Swarm Optimization (PSO), Chapter 7 on Genetic Algorithms (GAs), and Chapter 8 discussing Simulated Annealing (SA). Chapter 9 begins our exploration of advanced AI methods, by covering Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs). Chapter 10 discusses optimization ensembles and how they can add value to the Data Science pipeline. 
Chapter 11 contains several alternative AI frameworks including Extreme Learning Machines (ELMs), Capsule Networks (CapsNets), and Fuzzy Inference Systems (FIS). Chapter 12 covers other considerations complementary to the AI topics covered, including Big Data concepts, Data Science specialization areas, and useful data resources to experiment on.

A comprehensive glossary is included, as well as a series of appendices covering Transfer Learning, Reinforcement Learning, Autoencoder Systems, and Generative Adversarial Networks. There is also an appendix on the business aspects of AI in data science projects, and an appendix on how to use the Docker image to access the book's data and code. The field of AI is vast, and can be overwhelming for the newcomer to approach. This book will arm you with a solid understanding of the field, plus inspire you to explore further.

Yong Shi, Yingjie Tian, Gang Kou, Yi Peng, Jianping Li ... 316 pages - Publisher: Springer; (May, 2011) ... Language: English - ASIN: B00F5QT36Q by Amazon.

Optimization techniques have been widely adopted to implement various data mining algorithms. In addition to well-known Support Vector Machines (SVMs) (which are based on quadratic programming), different versions of Multiple Criteria Programming (MCP) have been extensively used in data separations. Since optimization based data mining methods differ from statistics, decision tree induction, and neural networks, their theoretical inspiration has attracted many researchers who are interested in algorithm development of data mining.

Optimization based Data Mining: Theory and Applications, mainly focuses on MCP and SVM especially their recent theoretical progress and real-life applications in various fields. These include finance, web services, bio-informatics and petroleum engineering, which has triggered the interest of practitioners who look for new methods to improve the results of data mining for knowledge discovery. Most of the material in this book is directly from the research and application activities that the authors’ research group has conducted over the last ten years. Aimed at practitioners and graduates who have a fundamental knowledge in data mining, it demonstrates the basic concepts and foundations on how to use optimization techniques to deal with data mining problems.

Kenneth R. Baker ... 392 pages - Publisher: Wiley; 3rd edition (July, 2015) ... Language: English - ISBN-10: 1118937694 - ISBN-13: 978-1118937693.

Updated and revised, Optimization Modeling with Spreadsheets, Third Edition emphasizes model building skills in optimization analysis. By emphasizing both spreadsheet modeling and optimization tools in the freely available Microsoft® Office Excel® Solver, the book illustrates how to find solutions to real-world optimization problems without needing additional specialized software.

The Third Edition includes many practical applications of optimization models as well as a systematic framework that illuminates the common structures found in many successful models. With focused coverage on linear programming, nonlinear programming, integer programming, and heuristic programming, Optimization Modeling with Spreadsheets, Third Edition features: An emphasis on model building using Excel Solver as well as appendices with additional instructions on more advanced packages such as Analytic Solver Platform and OpenSolver * Additional space devoted to formulation principles and model building as opposed to algorithms * New end-of-chapter homework exercises specifically for novice model builders * Presentation of the Sensitivity Toolkit for sensitivity analysis with Excel Solver * Classification of problem types to help readers see the broader possibilities for application * Specific chapters devoted to network models and data envelopment analysis * A companion website with interactive spreadsheets and supplementary homework exercises for additional practice. Optimization Modeling with Spreadsheets, Third Edition is an excellent textbook for upper-undergraduate and graduate-level courses that include deterministic models, optimization, spreadsheet modeling, quantitative methods, engineering management, engineering modeling, operations research, and management science. The book is an ideal reference for readers wishing to advance their knowledge of Excel and modeling and is also a useful guide for MBA students and modeling practitioners in business and non-profit sectors interested in spreadsheet optimization.

Ross Baldick ... 792 pages - Publisher: Cambridge University Press; (January, 2009) ... Language: English - ISBN-10: 0521100283 - ISBN-13: 978-0521100281.

The starting point in the formulation of any numerical problem is to take an intuitive idea about the problem in question and to translate it into precise mathematical language. This book provides step-by-step descriptions of how to formulate numerical problems so that they can be solved by existing software. It examines various types of numerical problems and develops techniques for solving them. A number of engineering case studies are used to illustrate in detail the formulation process. The case studies motivate the development of efficient algorithms that involve, in some cases, transformation of the problem from its initial formulation into a more tractable form.

Ronald E. Miller ... 676 pages - Publisher: Wiley-Interscience; (November, 1999) ... Language: English - ISBN-10: 0471351695 - ISBN-13: 978-0471351696.

A thorough and highly accessible resource for analysts in a broad range of social sciences: Optimization: Foundations and Applications presents a series of approaches to the challenges faced by analysts who must find the best way to accomplish particular objectives, usually with the added complication of constraints on the available choices. Award-winning educator Ronald E. Miller provides detailed coverage of both classical, calculus-based approaches and newer, computer-based iterative methods. Dr. Miller lays a solid foundation for both linear and nonlinear models and quickly moves on to discuss applications, including iterative methods for root-finding and for unconstrained maximization, approaches to the inequality constrained linear programming problem, and the complexities of inequality constrained maximization and minimization in nonlinear problems. Other important features include: More than 200 geometric interpretations of algebraic results, emphasizing the intuitive appeal of mathematics + Classic results mixed with modern numerical methods to aid users of computer programs + Extensive appendices containing mathematical details important for a thorough understanding of the topic. With special emphasis on questions most frequently asked by those encountering this material for the first time, Optimization: Foundations and Applications is an extremely useful resource for professionals in such areas as mathematics, engineering, economics and business, regional science, geography, sociology, political science, management and decision sciences, public policy analysis, and numerous other social sciences.

Steven J. Miller ... 327 pages - Publisher: American Mathematical Society; (December, 2017) ... Language: English - ISBN-10: 1470441144 - ISBN-13: 978-1470441142.

Optimization Theory is an active area of research with numerous applications; many of the books are designed for engineering classes, and thus have an emphasis on problems from such fields. Covering much of the same material, there is less emphasis on coding and detailed applications as the intended audience is more mathematical. There are still several important problems discussed (especially scheduling problems), but there is more emphasis on theory and less on the nuts and bolts of coding. A constant theme of the text is the ``why'' and the ``how'' in the subject. Why are we able to do a calculation efficiently? How should we look at a problem? Extensive effort is made to motivate the mathematics and isolate how one can apply ideas/perspectives to a variety of problems. As many of the key algorithms in the subject require too much time or detail to analyze in a first course (such as the run-time of the Simplex Algorithm), there are numerous comparisons to simpler algorithms which students have either seen or can quickly learn (such as the Euclidean algorithm) to motivate the type of results on run-time savings.

Contact Form

Name

Email *

Message *

Theme images by blue_baron. Powered by Blogger.