Articles by "Python"

2SI AASHTO Abaqus Actix Analyzer ADINA Adobe Acrobat Airports AISC Algorithms Aluminium Animation ANSYS APF Nexus Aquaveo Architecture Artificial Intelligence ASCE ASDIP Ashampoo Asphalt ASTM Autocad Autodesk Bentley BetonExpress BIMware MASTER BitCoin Blast Books Bridges Buildings CAD Calculus CCleaner Cement Chasm Consulting Civil 3D Clay Coastal Structures Codes ComingSoon Computer Engineering Concrete Conference Books CorelCAD Corrosion Courses/Lessons Cranes CSI CTI Vespa2 Daemon Tools Dams Data Analysis Data Mining Deep Freeze Deep Learning Design and Build Websites DiCad Strakon Dictionary Digital Canal DimSoln Dlubal Drainage Dredging Dynamics Earthquake Earthworks EC2 Reinforcement EC3 Steel Connections EC5 Timber Connections Economy Elasticity EnerCalc English Language Ensoft Entertainment Environmental Engineering Equipments Erosion ESPRI ETABS Eurocode Excavation Excel Expansive Soils FIDES DV-Partner Finite Element Model Fire Safety Fluid Mechanics Forensic Engineering Formulas Fortran Foundations Foxit Phantom FRP Game of Thrones Geo-Slope Geo5 Geoenvironmental Engineering Geographic Information Systems Geology Geomechanics Geomembranes Geosolve GeoStru GeoStudio Geosynthetics GeoTec Elpla Geotechnical Engineering Golden Software Graitec Grammar Grapher Ground Anchors Groundwater Grouting Gstarsoft Harry Potter Highways Historic Structures HTML5 Hydraulics Hydrology IBM IceCream Ebook Reader IDEA StatiCa IELTS IES Ikon Science InfraWorks Itasca Flac2D Java KESZ ConSteel Landslides LaTeX Limcon LimitState: GEO Lindo Linear Algebra Lingo Liquefaction LPile Lusas Malwarbytes Management Maple MapViewer Masonry Walls Materials Mathematica Maths MathType MATLAB Mechanical Engineering Mechanics Metaheuristic Algorithms Microsoft MicroStation Midas Minitab Money Movies Nanocomposites Neural Networks NovoTech Nuclear Power Plants Numerical Mathematics OaSys Octave Office Offshore OLGA Optimization Pavements PC Games PDF Phase2 Physics Piles PipeLines Pipesim Plants Plasticity Plaxis Polymath Polymer Power GEOPAK Powerpoint Precast Prestressed Concrete Pro Sap Proektsoft Programming Projects PROKON ProStructures ProtaStructure PTC MathCad Python QuickConcreteWall QuickConcretWall QuickFooting QuickMasonary QuickRWall R Language Radar System Railways RAM RCDC Regression Analysis Reinforced Concrete Reinforced Masonry Retaining Structures RetainPro Revit RISA Risk Analysis Roads RocDoc Rock Mechanics Rocscience Roofs S-Frame S.T.A. DATA 3Muri SAFE Safety Salford Predictive Modeler SAP2000 SCAD Office Schedule it Schlumberger SCIA Engineer Security Seepage Settle 3D Sewage ShapeBuilder Shotcrete Slide Slope Stability Sludge Smart Cities Snow Loads Softwares Soil Improvement Soil Mechanics SoilOffice SoilWorks SPSS STAAD.Foundation STAAD.Pro Standards Stat-Ease Stata Statics Statistics Steel Stone Strater StruCalc Structural Designer Structural Office StructurePoint Structures StruSoft Surfer Surveying Swarm Intelligence System Mechanic Tableau Technical Drawing Technology Tedds Tekla Testing The Big Bang Theory Thermodynamics Timber TOEFL Topology Torrent Traffic Transmission Lines Transportation Engineering Trimble Tunnels Turbo Pascal TV Series TweakBit Unsaturated Visual Basic Visual Integrity VisualAnalysis VisualFoundation VisualPlate VisualShearWall Water Welding Wind Loads Windows WinRAR Wolfram Wood Word
Showing posts with label Python. Show all posts

Andreas Müller, Sarah Guido ... 400 pages - Publisher: O'Reilly Media; (October, 2016) ... Language: English - ISBN-10: 1449369413 - ISBN-13: 978-1449369415.

Machine learning has become an integral part of many commercial applications and research projects, but this field is not exclusive to large companies with extensive research teams. If you use Python, even as a beginner, this book will teach you practical ways to build your own machine learning solutions. With all the data available today, machine learning applications are limited only by your imagination. You’ll learn the steps necessary to create a successful machine-learning application with Python and the scikit-learn library. Authors Andreas Müller and Sarah Guido focus on the practical aspects of using machine learning algorithms, rather than the math behind them. Familiarity with the NumPy and matplotlib libraries will help you get even more from this book.

With this book, you’ll learn: Fundamental concepts and applications of machine learning + Advantages and shortcomings of widely used machine learning algorithms + How to represent data processed by machine learning, including which data aspects to focus on + Advanced methods for model evaluation and parameter tuning + The concept of pipelines for chaining models and encapsulating your workflow + Methods for working with text data, including text-specific processing techniques + Suggestions for improving your machine learning and data science skills.

September 10, 2019 , , ,
Gowrishankar S., Veena A. ... 464 pages - Publisher: Chapman and Hall/CRC; (November, 2018) ... Language: English - ISBN-10: 0815394373 - ISBN-13: 978-0815394372

Introduction to Python Programming is written for students who are beginners in the field of computer programming. This book presents an intuitive approach to the concepts of Python Programming for students. This book differs from traditional texts not only in its philosophy but also in its overall focus, level of activities, development of topics, and attention to programming details. The contents of the book are chosen with utmost care after analyzing the syllabus for Python course prescribed by various top universities in USA, Europe, and Asia. Since the prerequisite know-how varies significantly from student to student, the book’s overall overture addresses the challenges of teaching and learning of students which is fine-tuned by the authors’ experience with large sections of students. This book uses natural language expressions instead of the traditional shortened words of the programming world. This book has been written with the goal to provide students with a textbook that can be easily understood and to make a connection between what students are learning and how they may apply that knowledge.

April 04, 2019 , ,
Silas Toms ... 210 pages - Publisher: Packt Publishing; (February, 2015) ... Language: English - ISBN-10: 1783988665 - ISBN-13: 978-1783988662 ...

Use the ArcPy module to automate the analysis and mapping of geospatial data in ArcGIS: Perform GIS analysis faster by automating tasks, such as selecting data or buffering data, by accessing GIS tools using scripting. Access the spatial data contained within shapefiles and geodatabases, for updates, analysis and even transformation between spatial reference systems. Produce map books and automate the mapping of geospatial analyses, reducing the time needed to produce and display the results. Who This Book Is For: If you are a GIS student or professional who needs an understanding of how to use ArcPy to reduce repetitive tasks and perform analysis faster, this book is for you. It is also a valuable book for Python programmers who want to understand how to automate geospatial analyses. What You Will Learn: Understand how to integrate Python into ArcGIS and make GIS analysis faster and easier + Model an analysis and export it to Python for further improvement + Create Python functions from exported scripts using ArcToolbox tools to avoid repetitive code + Update the records of interest in your existing geospatial data automatically using data cursors + Add new geospatial data to existing datasets automatically from field-collected data or data produced during analysis + Export formatted analysis results to spreadsheets automatically + Update map documents with analysis-generated data and export maps to PDF or image formats + Create geometric networks and analyze routes using scripts.

Benjamin Baka ... 312 pages - Publisher: Packt Publishing; (May, 2017) ... Language: English - ASIN: B01IF7NLM8 by Amazon ...

Data structures allow you to organize data in a particular way efficiently. They are critical to any problem, provide a complete solution, and act like reusable code. In this book, you will learn the essential Python data structures and the most common algorithms. With this easy-to-read book, you will be able to understand the power of linked lists, double linked lists, and circular linked lists. You will be able to create complex data structures such as graphs, stacks and queues. We will explore the application of binary searches and binary search trees. You will learn the common techniques and structures used in tasks such as preprocessing, modeling, and transforming data. We will also discuss how to organize your code in a manageable, consistent, and extendable way. The book will explore in detail sorting algorithms such as bubble sort, selection sort, insertion sort, and merge sort. By the end of the book, you will learn how to build components that are easy to understand, debug, and use in different applications.

March 12, 2019 , ,
Kent D. Lee, Steve Hubbard ... 363 pages - Publisher: Springer; (January, 2015) ... Language: English- ISBN-10: 3319130714 - ISBN-13: 978-3319130712 ...

This textbook explains the concepts and techniques required to write programs that can handle large amounts of data efficiently. Project-oriented and classroom-tested, the book presents a number of important algorithms supported by examples that bring meaning to the problems faced by computer programmers. The idea of computational complexity is also introduced, demonstrating what can and cannot be computed efficiently so that the programmer can make informed judgements about the algorithms they use. Features: includes both introductory and advanced data structures and algorithms topics, with suggested chapter sequences for those respective courses provided in the preface; provides learning goals, review questions and programming exercises in each chapter, as well as numerous illustrative examples; offers downloadable programs and supplementary files at an associated website, with instructor materials available from the author; presents a primer on Python for those from a different language background.

February 07, 2019 , , ,
Michael T. Goodrich, Roberto Tamassia, Michael H. Goldwasser ... 748 pages - Publisher: Wiley India; (October, 2013) ... Language: English - ISBN-10: 1118290275 - ISBN-13: 978-1118290279 ...

Based on the authors’ market leading data structures books in Java and C++, this book offers a comprehensive, definitive introduction to data structures in Python by authoritative authors. Data Structures and Algorithms in Python is the first authoritative object-oriented book available for Python data structures. Designed to provide a comprehensive introduction to data structures and algorithms, including their design, analysis, and implementation, the text will maintain the same general structure as Data Structures and Algorithms in Java and Data Structures and Algorithms in C++.Begins by discussing Python’s conceptually simple syntax, which allows for a greater focus on concepts. Employs a consistent object-oriented viewpoint throughout the text. Presents each data structure using ADTs and their respective implementations and introduces important design patterns as a means to organize those implementations into classes, methods, and objects. Provides a thorough discussion on the analysis and design of fundamental data structures. Includes many helpful Python code examples, with source code provided on the website. Uses illustrations to present data structures and algorithms, as well as their analysis, in a clear, visual manner. Provides hundreds of exercises that promote creativity, help readers learn how to think like programmers, and reinforce important concepts. Contains many Python-code and pseudo-code fragments, and hundreds of exercises, which are divided into roughly 40% reinforcement exercises, 40% creativity exercises, and 20% programming projects.

The topics in this course come from an analysis of real requirements in data scientist job listings from the biggest tech employers. We'll cover the machine learning, AI, and data mining techniques real employers are looking for, including: Deep Learning / Neural Networks (MLP's, CNN's, RNN's) with TensorFlow and Keras + Sentiment analysis + Image recognition and classification + Regression analysis + K-Means Clustering + Principal Component Analysis + Train/Test and cross validation + Bayesian Methods + Decision Trees and Random Forests + Multivariate Regression + Multi-Level Models + Support Vector Machines + Reinforcement Learning + Collaborative Filtering + K-Nearest Neighbor + Bias/Variance Tradeoff + Ensemble Learning + Term Frequency / Inverse Document Frequency + Experimental Design and A/B Tests.

Luca Massaron ... 312 pages - Publisher: Packt Publishing; (February, 2016) ... Language: English - ISBN-10: 1785286315 - ISBN-13: 978-1785286315 ...

Regression is the process of learning relationships between inputs and continuous outputs from example data, which enables predictions for novel inputs. There are many kinds of regression algorithms, and the aim of this book is to explain which is the right one to use for each set of problems and how to prepare real-world data for it. With this book you will learn to define a simple regression problem and evaluate its performance. The book will help you understand how to properly parse a dataset, clean it, and create an output matrix optimally built for regression. You will begin with a simple regression algorithm to solve some data science problems and then progress to more complex algorithms. The book will enable you to use regression models to predict outcomes and take critical business decisions. Through the book, you will gain knowledge to use Python for building fast better linear models and to apply the results in Python or in any computer language you prefer.

February 11, 2018 , , ,
Cyberpunk University ... 126 pages - Publisher: CreateSpace Independent Publishing; (January, 2017) ... Language: English - ISBN-10: 1542589401 - ISBN-13: 978-1542589406 ...

What if you could automate your life to make it much easier? How about, building your own API’s, messaging bots or create an automated coffee machine to make you coffee at the right time with the perfect temperature. Sounds good? This is just a fraction of what you could do with Python and we would love to show you how in just 12 Hours! Bullsh*t you say? Here at Cyberpunk University, we believe that we have the ability to learn Python to anybody within 12 hours. We know how quite tricky it is to learn and be a master of any programming language. Our team is comprised of professionals who have been in the industry of information technology for decades and our experience made us able to create information products such as this step-by-step guide. We took out all the bullsh*t and tell you what to do, and more important, HOW TO DO IT! What will you find in this book: - How to setup the programming language of the future - How to run Hello World the RIGHTWAY - How to use all the different data types in Python - Exercises at the end of each chapter to help you master Python - How to handle errors and exceptions when writing a program - How you can test your programs.

Wes McKinney ... 544 pages - Publisher: O'Reilly Media; 2nd edition (October, 2017) ... Language: English - ISBN-10: 1491957662 - ISBN-13: 978-1491957660 ... 

Get complete instructions for manipulating, processing, cleaning, and crunching datasets in Python. Updated for Python 3.6, the second edition of this hands-on guide is packed with practical case studies that show you how to solve a broad set of data analysis problems effectively. You’ll learn the latest versions of pandas, NumPy, IPython, and Jupyter in the process. Written by Wes McKinney, the creator of the Python pandas project, this book is a practical, modern introduction to data science tools in Python. It’s ideal for analysts new to Python and for Python programmers new to data science and scientific computing. Data files and related material are available on GitHub. Use the IPython shell and Jupyter notebook for exploratory computing * Learn basic and advanced features in NumPy (Numerical Python) * Get started with data analysis tools in the pandas library * Use flexible tools to load, clean, transform, merge, and reshape data * Create informative visualizations with matplotlib * Apply the pandas groupby facility to slice, dice, and summarize datasets * Analyze and manipulate regular and irregular time series data * Learn how to solve real-world data analysis problems with thorough, detailed examples.

Laura Igual, Santi Segui ... 218 pages - Publisher: Springer; 1st edition (March, 2017) ... Language: English - ISBN-10: 3319500163 - ISBN-13: 978-3319500164 ...

This accessible and classroom-tested textbook/reference presents an introduction to the fundamentals of the emerging and interdisciplinary field of data science. The coverage spans key concepts adopted from statistics and machine learning, useful techniques for graph analysis and parallel programming, and the practical application of data science for such tasks as building recommender systems or performing sentiment analysis. Topics and features: provides numerous practical case studies using real-world data throughout the book; supports understanding through hands-on experience of solving data science problems using Python; describes techniques and tools for statistical analysis, machine learning, graph analysis, and parallel programming; reviews a range of applications of data science, including recommender systems and sentiment analysis of text data; provides supplementary code resources and data at an associated website.

October 07, 2015 , ,
Brett Slatkin ... 256 pages - Publisher: Addison-Wesley Professional; 1st edition (March, 2015) ... Language: English - ISBN-10: 0134034287 - ISBN-13: 978-0134034287 ...

It's easy to start writing code with Python: that's why the language is so immensely popular. However, Python has unique strengths, charms, and expressivity that can be hard to grasp at first -- as well as hidden pitfalls that can easily trip you up if you aren't aware of them. Effective Python will help you harness the full power of Python to write exceptionally robust, efficient, maintainable, and well-performing code. Utilizing the concise, scenario-driven style pioneered in Scott Meyers's best-selling Effective C++, Brett Slatkin brings together 59 Python best practices, tips, shortcuts, and realistic code examples from expert programmers. Through realistic examples, Slatkin uncovers little-known Python quirks, intricacies, and idioms that powerfully impact code behavior and performance. You'll learn how to choose the most efficient and effective way to accomplish key tasks when multiple options exist, and how to write code that's easier to understand, maintain, and improve. Drawing on his deep understanding of Python's capabilities, Slatkin offers practical advice for each major area of development with both Python 3.x and Python 2.x. Coverage includes: Algorithms + Objects + Concurrency + Collaboration + Built-in modules + Production techniques + And more. Each section contains specific, actionable guidelines organized into items, each with carefully worded advice supported by detailed technical arguments and illuminating examples. Using Effective Python, you can systematically improve all the Python code you write: not by blindly following rules or mimicking incomprehensible idioms, but by gaining a deep understanding of the technical reasons why they make sense.

J. Burton Browning, Marty Alchin ... 
384 pages - Publisher: Apress; 2nd edition (December 24, 2014)
Language: English - ISBN-10: 1484203356 - ISBN-13: 978-1484203354

You’ve learned the basics of Python, but how do you take your skills to the next stage? Even if you know enough to be productive, there are a number of features that can take you to the next level in Python. Pro Python, Second Edition explores concepts and features normally left to experimentation, allowing you to be even more productive and creative.

In addition to pure code concerns, Pro Python develops your programming techniques and approaches, which will help make you a better Python programmer. This book will improve not only your code but also your understanding and interaction with the many established Python communities. This book takes your Python knowledge and coding skills to the next level. It shows you how to write clean, innovative code that will be respected by your peers. With this book, make your code do more with introspection and meta-programming. And learn and later use the nuts and bolts of an application, tier-by-tier as a complex case study along the way.

What you’ll learn: Write strong Python code that will be respected in the Python community +
Understand the reasons behind big design decisions in Python + Write programs that can reconfigure themselves in Python + Disguise your code as different types of objects in Python + Inspect just about any object in Python + Prepare your code for international audiences + Ensure code quality with rigorous testing.
Who this book is for: This book is for intermediate to advanced Python programmers who are looking to understand how and why Python works the way it does and how they can take their code to the next level.

John M. Stewart ... 
230 pages - Publisher: Cambridge University Press; 1st edition (August 29, 2014)
Language: English - ISBN-10: 1107686423 - ISBN-13: 978-1107686427

Python is a free, open source, easy-to-use software tool that offers a significant alternative to proprietary packages such as MATLAB and Mathematica. This book covers everything the working scientist needs to know to start using Python effectively. The author explains scientific Python from scratch, showing how easy it is to implement and test non-trivial mathematical algorithms and guiding the reader through the many freely available add-on modules. A range of examples, relevant to many different fields, illustrate the program's capabilities. In particular, readers are shown how to use pre-existing legacy code (usually in Fortran77) within the Python environment, thus avoiding the need to master the original code. Instead of exercises the book contains useful snippets of tested code which the reader can adapt to handle problems in their own field, allowing students and researchers with little computer expertise to get up and running as soon as possible.

Micha Gorelick, Ian Ozsvald ... 
370 pages- Publisher: O'Reilly Media; 1st edition (September 20, 2014)
Language: English - ISBN-10: 1449361595 - ISBN-13: 978-1449361594 

Your Python code may run correctly, but you need it to run faster. By exploring the fundamental theory behind design choices, this practical guide helps you gain a deeper understanding of Python’s implementation. You’ll learn how to locate performance bottlenecks and significantly speed up your code in high-data-volume programs.

How can you take advantage of multi-core architectures or clusters? Or build a system that can scale up and down without losing reliability? Experienced Python programmers will learn concrete solutions to these and other issues, along with war stories from companies that use high performance Python for social media analytics, productionized machine learning, and other situations.
  • Get a better grasp of numpy, Cython and profilers
  • Learn how Python abstracts the underlying computer architecture
  • Use profiling to find bottlenecks in CPU time and memory usage
  • Write efficient programs by choosing appropriate data structures
  • Speed up matrix and vector computations
  • Use tools to compile Python down to machine code
  • Manage multiple I/O and computational operations concurrently
  • Convert multiprocessing code to run on a local or remote cluster
  • Solve large problems while using less RAM.

Contact Form


Email *

Message *

Theme images by latex. Powered by Blogger.