The.Hottest

T. S. Nagaraj ...708 pages -Publisher: Elsevier Science; (January, 1993) ... Language: English - ISBN-10: 0444889116 - ISBN-13: 978-0444889119.

Soils, rocks and concrete are the principal materials a civil engineer encounters in practice. This book deals with the material analogies, their implications in property characterization, giving attention to similar as well as dissimilar methods in respect of each of these three materials. It provides an integrated, systematic approach for realistic assessment of engineering properties of soils, rocks and concrete. Geotechnical engineers, civil engineers and materials scientists will be interested in this volume.

Richard S. Sutton, Andrew G. Barto ... 532 pages - Publisher: A Bradford Book; 2nd edition (October, 2018) ... Language: English - AmazonSIN: B07JN1QFW5.

The significantly expanded and updated new edition of a widely used text on reinforcement learning, one of the most active research areas in artificial intelligence: Reinforcement learning, one of the most active research areas in artificial intelligence, is a computational approach to learning whereby an agent tries to maximize the total amount of reward it receives while interacting with a complex, uncertain environment. In Reinforcement Learning, Richard Sutton and Andrew Barto provide a clear and simple account of the field's key ideas and algorithms. This second edition has been significantly expanded and updated, presenting new topics and updating coverage of other topics.

Like the first edition, this second edition focuses on core online learning algorithms, with the more mathematical material set off in shaded boxes. Part I covers as much of reinforcement learning as possible without going beyond the tabular case for which exact solutions can be found. Many algorithms presented in this part are new to the second edition, including UCB, Expected Sarsa, and Double Learning. Part II extends these ideas to function approximation, with new sections on such topics as artificial neural networks and the Fourier basis, and offers expanded treatment of off-policy learning and policy-gradient methods. Part III has new chapters on reinforcement learning's relationships to psychology and neuroscience, as well as an updated case-studies chapter including AlphaGo and AlphaGo Zero, Atari game playing, and IBM Watson's wagering strategy. The final chapter discusses the future societal impacts of reinforcement learning.

Eugene Charniak ... 192 pages - Publisher: The MIT Press; (January, 2019) ... Language: English - AmazonSIN: B07PGRZXN8.

This concise, project-driven guide to deep learning takes readers through a series of program-writing tasks that introduce them to the use of deep learning in such areas of artificial intelligence as computer vision, natural-language processing, and reinforcement learning. The author, a longtime artificial intelligence researcher specializing in natural-language processing, covers feed-forward neural nets, convolutional neural nets, word embeddings, recurrent neural nets, sequence-to-sequence learning, deep reinforcement learning, unsupervised models, and other fundamental concepts and techniques. Students and practitioners learn the basics of deep learning by working through programs in Tensorflow, an open-source machine learning framework. “I find I learn computer science material best by sitting down and writing programs,” the author writes, and the book reflects this approach.

Each chapter includes a programming project, exercises, and references for further reading. An early chapter is devoted to Tensorflow and its interface with Python, the widely used programming language. Familiarity with linear algebra, multivariate calculus, and probability and statistics is required, as is a rudimentary knowledge of programming in Python. The book can be used in both undergraduate and graduate courses; practitioners will find it an essential reference.

Jesús Rogel-Salazar ... 420 pages - Publisher: Chapman and Hall/CRC; (May, 2020) ... Language: English - AmazonSIN: B0883XB13B.

Advanced Data Science and Analytics with Python enables data scientists to continue developing their skills and apply them in business as well as academic settings. The subjects discussed in this book are complementary and a follow-up to the topics discussed in Data Science and Analytics with Python. The aim is to cover important advanced areas in data science using tools developed in Python such as SciKit-learn, Pandas, Numpy, Beautiful Soup, NLTK, NetworkX and others. The model development is supported by the use of frameworks such as Keras, TensorFlow and Core ML, as well as Swift for the development of iOS and MacOS applications.

Features: Targets readers with a background in programming, who are interested in the tools used in data analytics and data science + Uses Python throughout + Presents tools, alongside solved examples, with steps that the reader can easily reproduce and adapt to their needs + Focuses on the practical use of the tools rather than on lengthy explanations + Provides the reader with the opportunity to use the book whenever needed rather than following a sequential path.

The book can be read independently from the previous volume and each of the chapters in this volume is sufficiently independent from the others, providing flexibility for the reader. Each of the topics addressed in the book tackles the data science workflow from a practical perspective, concentrating on the process and results obtained. The implementation and deployment of trained models are central to the book. Time series analysis, natural language processing, topic modelling, social network analysis, neural networks and deep learning are comprehensively covered. The book discusses the need to develop data products and addresses the subject of bringing models to their intended audiences – in this case, literally to the users’ fingertips in the form of an iPhone app.

Kumar Molugaram, G. Shanker Rao ... 538 pages - Publisher: Butterworth-Heinemann; (March, 2017) ... Language: English.

Statistical Techniques for Transportation Engineering is written with a systematic approach in mind and covers a full range of data analysis topics, from the introductory level (basic probability, measures of dispersion, random variable, discrete and continuous distributions) through more generally used techniques (common statistical distributions, hypothesis testing), to advanced analysis and statistical modeling techniques (regression, AnoVa, and time series). The book also provides worked out examples and solved problems for a wide variety of transportation engineering challenges.

Demonstrates how to effectively interpret, summarize, and report transportation data using appropriate statistical descriptors + Teaches how to identify and apply appropriate analysis methods for transportation data + Explains how to evaluate transportation proposals and schemes with statistical rigor.

Andreas Öchsner ... 606 pages - Publisher: Springer; 2nd edition (January, 2020) ... Language: English - AmazonSIN: B083GNPFGW.

This book is the 2nd edition of an introduction to modern computational mechanics based on the finite element method. It includes more details on the theory, more exercises, and more consistent notation; in addition, all pictures have been revised. Featuring more than 100 pages of new material, the new edition will help students succeed in mechanics courses by showing them how to apply the fundamental knowledge they gained in the first years of their engineering education to more advanced topics. In order to deepen readers’ understanding of the equations and theories discussed, each chapter also includes supplementary problems. These problems start with fundamental knowledge questions on the theory presented in the respective chapter, followed by calculation problems. In total, over 80 such calculation problems are provided, along with brief solutions for each. This book is especially designed to meet the needs of Australian students, reviewing the mathematics covered in their first two years at university. The 13-week course comprises three hours of lectures and two hours of tutorials per week.

Contact Form

Name

Email *

Message *

Powered by Blogger.