The.Hottest

Gennadiy P. Nikishkov ... 402 pages - Publisher: Springer; (January 12, 2010) ...
Language: English - ISBN-10: 184882971X - ISBN-13: 978-1848829718 ...

The finite element method (FEM) is a computational technique for solving problems which are described by partial differential equations or which can be formulated as functional minimization. The FEM is commonly used in the design and development of products, especially where structural analysis is involved. The simple object model of the Java™ programming language lends itself to efficient implementation of FEM analysis.

Programming Finite Elements in Java™ teaches the reader FEM algorithms and their programming in Java™ through a single finite element Java™ program. The compact, simple code makes it straightforward to understand the algorithms and their implementation, thereby encouraging developers to extend the code to their own tasks. All of the main aspects of finite element techniques are considered: finite element solution;  generation of finite element meshes; and visualization of finite element models and results with Java 3D™.

The step-by-step presentation includes algorithm programming and code explanation at each point. Problems and exercises are provided for each chapter, with Java™ source code and problem data sets available from http://extras.springer.com/2010/978-1-84882-971-8.

Graduate students using the FEM will find the simple but detailed object-oriented programming methods presented in this textbook to be of great assistance in understanding the FEM, including mesh generation and visualization. Programming Finite Elements in Java™ will also be of interest to senior undergraduates doing special studies encompassing the FEM. Researchers and practicing engineers already familiar with the FEM but seeking an alternative approach will find this book readily suited to self study.

Eric Vincens, Jean-Patrick Plassiard, Jean-Jacques Fry ... 
162 pages - Publisher: ISTE Press-Elsevier; 1st edition (January 29, 2016) ...
Language: English - ASIN: B01BGN2A6G by Amazon Digital Services LLC ... 

Dry stone retaining structures are structures made of individual decimeter stone blocks in contact. One advantage of this construction technology lies in the weak amount of embodied energy required for their construction, and uses only local materials. This technology may be a positive answer to the challenges brought by sustainable policies in civil engineering.

Many of these structures are older than one hundred years and sustain damage due to ageing; this places the owners in front of a challenging issue. Usual scientific tools cannot address the specific behavior of such structures. Due to the discrete nature of the system, a large amount of energy can be dissipated at contact level before failure of the structure. The shape, arrangement and possible breakage of blocks may play a major role in their overall behavior, specific to these structures. This book brings an overview of the DEM technique to model the behavior of discrete civil engineering structures. Physical models, modeling and site measurements are all explored, helping the civil engineer evaluate the behavior of unique structures.

The only DEM technique to model the behavior of discrete civil engineering structures + A specific and sophisticated tool to address the general features observed on site + Details physical models, modeling and site measurements.

Ansel C. Ugural, Saul K. Fenster ... 
560 pages - Publisher: Prentice Hall; 4th edition (February 9, 2003) ...
Language: English - ISBN-10: 0130473928 - ISBN-13: 978-0130473929 ...

This systematic exploration of real-world stress analysis has been completely revised and updated to reflect state-of-the-art methods and applications now in use throughout the fields of aeronautical, civil, and mechanical engineering and engineering mechanics. Distinguished by its exceptional visual interpretations of the solutions, it offers an in-depth coverage of the subjects for students and practicing engineers. The authors carefully balance comprehensive treatments of solid mechanics, elasticity, and computer-oriented numerical methods. In addition, a wide range of fully worked illustrative examples and an extensive problem sets–many taken directly from engineering practice–have been incorporated. 

Key additions to the Fourth Edition of this highly acclaimed textbook are materials dealing with failure theories, fracture mechanics, compound cylinders, numerical approaches, energy and variational methods, buckling of stepped columns, common shell types, and more. Contents include stress, strain and stress-strain relations, problems in elasticity, static and dynamic failure criteria, bending of beams and torsion of bars, finite difference and finite element methods, axisymmetrically loaded members, beams on elastic foundations, energy methods, elastic stability, plastic behavior of materials, stresses in plates and shells, and selected references to expose readers to the latest information in the field.

Contact Form

Name

Email *

Message *

Powered by Blogger.