Articles by "Stone"

2SI AASHTO Abaqus Actix Analyzer ADINA Adobe Acrobat Airports AISC Algorithms Aluminium Animation ANSYS APF Nexus Aquaveo Architecture Artificial Intelligence ASCE ASDIP Ashampoo Asphalt ASTM Autocad Autodesk Bentley BetonExpress BIMware MASTER BitCoin Blast Books Bridges Buildings CAD Calculus CCleaner Cement Chasm Consulting Civil 3D Clay Coastal Structures Codes ComingSoon Computer Engineering Concrete Conference Books CorelCAD Corrosion Courses/Lessons Cranes CSI CTI Vespa2 Daemon Tools Dams Data Analysis Data Mining Deep Freeze Deep Learning Design and Build Websites DiCad Strakon Dictionary Digital Canal DimSoln Dlubal Drainage Dredging Dynamics Earthquake Earthworks EC2 Reinforcement EC3 Steel Connections EC5 Timber Connections Economy Elasticity EnerCalc English Language Ensoft Entertainment Environmental Engineering Equipments Erosion ESPRI ETABS Eurocode Excavation Excel Expansive Soils FIDES DV-Partner Finite Element Model Fire Safety Fluid Mechanics Forensic Engineering Formulas Fortran Foundations Foxit Phantom FRP Game of Thrones Geo-Slope Geo5 Geoenvironmental Engineering Geographic Information Systems Geology Geomechanics Geomembranes Geosolve GeoStru GeoStudio Geosynthetics GeoTec Elpla Geotechnical Engineering Golden Software Graitec Grammar Grapher Ground Anchors Groundwater Grouting Gstarsoft Harry Potter Highways Historic Structures HTML5 Hydraulics Hydrology IBM IceCream Ebook Reader IDEA StatiCa IELTS IES Ikon Science InfraWorks Itasca Flac2D Java KESZ ConSteel Landslides LaTeX Limcon LimitState: GEO Lindo Linear Algebra Lingo Liquefaction LPile Lusas Malwarbytes Management Maple MapViewer Masonry Walls Materials Mathematica Maths MathType MATLAB Mechanical Engineering Mechanics Metaheuristic Algorithms Microsoft MicroStation Midas Minitab Money Movies Nanocomposites Neural Networks NovoTech Nuclear Power Plants Numerical Mathematics OaSys Octave Office Offshore OLGA Optimization Pavements PC Games PDF Phase2 Physics Piles PipeLines Pipesim Plants Plasticity Plaxis Polymath Polymer Power GEOPAK Powerpoint Precast Prestressed Concrete Pro Sap Proektsoft Programming Projects PROKON ProStructures ProtaStructure PTC MathCad Python QuickConcreteWall QuickConcretWall QuickFooting QuickMasonary QuickRWall R Language Radar System Railways RAM RCDC Regression Analysis Reinforced Concrete Reinforced Masonry Retaining Structures RetainPro Revit RISA Risk Analysis Roads RocDoc Rock Mechanics Rocscience Roofs S-Frame S.T.A. DATA 3Muri SAFE Safety Salford Predictive Modeler SAP2000 SCAD Office Schedule it Schlumberger SCIA Engineer Security Seepage Settle 3D Sewage ShapeBuilder Shotcrete Slide Slope Stability Sludge Smart Cities Snow Loads Softwares Soil Improvement Soil Mechanics SoilOffice SoilWorks SPSS STAAD.Foundation STAAD.Pro Standards Stat-Ease Stata Statics Statistics Steel Stone Strater StruCalc Structural Designer Structural Office StructurePoint Structures StruSoft Surfer Surveying Swarm Intelligence System Mechanic Tableau Technical Drawing Technology Tedds Tekla Testing The Big Bang Theory Thermodynamics Timber TOEFL Topology Torrent Traffic Transmission Lines Transportation Engineering Trimble Tunnels Turbo Pascal TV Series TweakBit Unsaturated Visual Basic Visual Integrity VisualAnalysis VisualFoundation VisualPlate VisualShearWall Water Welding Wind Loads Windows WinRAR Wolfram Wood Word
Showing posts with label Stone. Show all posts

P. F. McCombie, J-Claude Morel, D. Garnier ... 186 pages - Publisher: CRC Press; (September, 2015) ... Language: English - ASIN: B015PNEVXI by Amazon.

Take a Detailed Look at the Practice of Drystone Retaining Wall Construction: Drystone retaining walls make very efficient use of local materials, and sit comfortably in their environment. They make an important contribution to heritage and to the character of the landscape, and are loved by many people who value the skill and ingenuity that has gone into their construction, as well as simply how they look. And yet, in engineering terms, they are complex. They can deform significantly as their loading changes and their constituent stones weather. This gives them ductility—they deal with changes by adapting to them. In some ways, they behave like conventional concrete retaining walls, but in many ways they are better. They cannot be designed or assessed correctly unless these differences are understood.
    Implementing concepts that require no prior knowledge of civil engineering, the authors: Explain the behavior of earth retaining structures + Provide a theoretical framework for modeling the mechanical stability of a drystone retaining wall  + Outline reliable rules for constructing a drystone retaining wall  + Include charts to support the preliminary sizing of drystone retaining walls  + Examine the relevance of drystone in terms of sustainability  + Describe more advanced methods of analysis.

    Eric Vincens, Jean-Patrick Plassiard, Jean-Jacques Fry ... 
    162 pages - Publisher: ISTE Press-Elsevier; 1st edition (January 29, 2016) ...
    Language: English - ASIN: B01BGN2A6G by Amazon Digital Services LLC ... 

    Dry stone retaining structures are structures made of individual decimeter stone blocks in contact. One advantage of this construction technology lies in the weak amount of embodied energy required for their construction, and uses only local materials. This technology may be a positive answer to the challenges brought by sustainable policies in civil engineering.

    Many of these structures are older than one hundred years and sustain damage due to ageing; this places the owners in front of a challenging issue. Usual scientific tools cannot address the specific behavior of such structures. Due to the discrete nature of the system, a large amount of energy can be dissipated at contact level before failure of the structure. The shape, arrangement and possible breakage of blocks may play a major role in their overall behavior, specific to these structures. This book brings an overview of the DEM technique to model the behavior of discrete civil engineering structures. Physical models, modeling and site measurements are all explored, helping the civil engineer evaluate the behavior of unique structures.

    The only DEM technique to model the behavior of discrete civil engineering structures + A specific and sophisticated tool to address the general features observed on site + Details physical models, modeling and site measurements.

    Contact Form

    Name

    Email *

    Message *

    Theme images by latex. Powered by Blogger.