The.Hottest

Xin-She Yang ... 175 pages - Publisher: Academic Press; (June, 2019) ... Language: English - ASIN: B07T7VSR37 by Amazon.

Introduction to Algorithms for Data Mining and Machine Learning introduces the essential ideas behind all key algorithms and techniques for data mining and machine learning, along with optimization techniques. Its strong formal mathematical approach, well selected examples, and practical software recommendations help readers develop confidence in their data modeling skills so they can process and interpret data for classification, clustering, curve-fitting and predictions.

Features: Masterfully balancing theory and practice, it is especially useful for those who need relevant, well explained, but not rigorous (proofs based) background theory and clear guidelines for working with big data. + Presents an informal, theorem-free approach with concise, compact coverage of all fundamental topics. + Includes worked examples that help users increase confidence in their understanding of key algorithms, thus encouraging self-study. + Provides algorithms and techniques that can be implemented in any programming language, with each chapter including notes about relevant software packages.

Bertrand Clarke, Ernest Fokoue, Hao Helen Zhang ... 786 pages - Publisher: Springer; (July, 2009) ... Language: English - ISBN-10: 0387981349 - ISBN-13: 978-0387981345. 

This book is a thorough introduction to the most important topics in data mining and machine learning. It begins with a detailed review of classical function estimation and proceeds with chapters on nonlinear regression, classification, and ensemble methods. The final chapters focus on clustering, dimension reduction, variable selection, and multiple comparisons. All these topics have undergone extraordinarily rapid development in recent years and this treatment offers a modern perspective emphasizing the most recent contributions. The presentation of foundational results is detailed and includes many accessible proofs not readily available outside original sources. While the orientation is conceptual and theoretical, the main points are regularly reinforced by computational comparisons.

Intended primarily as a graduate level textbook for statistics, computer science, and electrical engineering students, this book assumes only a strong foundation in undergraduate statistics and mathematics, and facility with using R packages. The text has a wide variety of problems, many of an exploratory nature. There are numerous computed examples, complete with code, so that further computations can be carried out readily. The book also serves as a handbook for researchers who want a conceptual overview of the central topics in data mining and machine learning.

Ke-Lin Du, M. N. S. Swamy ... 824 pages - Publisher: Springer; (December, 2013) ... Language: English - ISBN-10: 144715570X - ISBN-13: 978-1447155706.

Providing a broad but in-depth introduction to neural network and machine learning in a statistical framework, this book provides a single, comprehensive resource for study and further research. All the major popular neural network models and statistical learning approaches are covered with examples and exercises in every chapter to develop a practical working understanding of the content. Each of the twenty-five chapters includes state-of-the-art descriptions and important research results on the respective topics. The broad coverage includes the multilayer perceptron, the Hopfield network, associative memory models, clustering models and algorithms, the radial basis function network, recurrent neural networks, principal component analysis, nonnegative matrix factorization, independent component analysis, discriminant analysis, support vector machines, kernel methods, reinforcement learning, probabilistic and Bayesian networks, data fusion and ensemble learning, fuzzy sets and logic, neurofuzzy models, hardware implementations, and some machine learning topics. Applications to biometric/bioinformatics and data mining are also included. Focusing on the prominent accomplishments and their practical aspects, academic and technical staff, graduate students and researchers will find that this provides a solid foundation and encompassing reference for the fields of neural networks, pattern recognition, signal processing, machine learning, computational intelligence and data mining.

Contact Form

Name

Email *

Message *

Powered by Blogger.