The.Hottest

Richard J. Brook, Gregory C. Arnold ... 256 pages - ISBN-10: 0824772520 - ISBN-13: 978-0824772529 ... Publisher : CRC Press; (December, 2018) - Language: English.


For a solid foundation of important statistical methods, the concise, single-source text unites linear regression with analysis of experiments and provides students with the practical understanding needed to apply theory in real data analysis problems.Stressing principles while keeping computational and theoretical details at a manageable level, Applied Regression Analysis and Experimental Design features an emphasis on vector geometry and least squares to unify and provide an intuitive basis for most topics covered… abundant examples and exercises using real-life data sets clearly illustrating practical of data analysis…essential exposure to MINITAB and GENSTAT computer packages , including computer printouts…and important background material such as vector and matrix properties and the distributional properties of quadratic forms.Designed to make theory work for students, this clearly written, easy-to-understand work serves as the ideal texts for courses Regression, Experimental Design, and Linear Models in a broad range of disciplines. Moreover, applied statisticians will find the book a useful reference for the general application of the linear model.

Richard McElreath ... 612 pages - ISBN-10: 036713991X - ISBN-13: 978-0367139919 ... Publisher : Chapman and Hall/CRC; 2nd Edition (March, 2020) - Language: English.


Statistical Rethinking: A Bayesian Course with Examples in R and Stan builds your knowledge of and confidence in making inferences from data. Reflecting the need for scripting in today's model-based statistics, the book pushes you to perform step-by-step calculations that are usually automated. This unique computational approach ensures that you understand enough of the details to make reasonable choices and interpretations in your own modeling work. The text presents causal inference and generalized linear multilevel models from a simple Bayesian perspective that builds on information theory and maximum entropy. The core material ranges from the basics of regression to advanced multilevel models. It also presents measurement error, missing data, and Gaussian process models for spatial and phylogenetic confounding.

The second edition emphasizes the directed acyclic graph (DAG) approach to causal inference, integrating DAGs into many examples. The new edition also contains new material on the design of prior distributions, splines, ordered categorical predictors, social relations models, cross-validation, importance sampling, instrumental variables, and Hamiltonian Monte Carlo. It ends with an entirely new chapter that goes beyond generalized linear modeling, showing how domain-specific scientific models can be built into statistical analyses. Features: Integrates working code into the main text + Illustrates concepts through worked data analysis examples + Emphasizes understanding assumptions and how assumptions are reflected in code + Offers more detailed explanations of the mathematics in optional sections + Presents examples of using the dagitty R package to analyze causal graphs + Provides the rethinking R package on the author's website and on GitHub

Alan C. Acock ... 500 pages - ISBN-10: 1597181420 - ISBN-13: 978-1597181426 ... Publisher: Stata Press; 4th Edition (April, 2014) - Language: English.


A Gentle Introduction to Stata, Fourth Edition is for people who need to learn Stata but who may not have a strong background in statistics or prior experience with statistical software packages. After working through this book, you will be able to enter, build, and manage a dataset, and perform fundamental statistical analyses. This book is organized like the unfolding of a research project. You begin by learning how to enter and manage data and how to do basic descriptive statistics and graphical analysis. Then you learn how to perform standard statistical procedures from t tests, nonparametric tests, and measures of association through ANOVA, multiple regression, and logistic regression. Readers who have experience with another statistical package may benefit more by reading chapters selectively and referring to this book as needed. The fourth edition has incorporated numerous changes that were new with Stata 13. Coverage of the marginsplot command has expanded. This simplifies the construction of compelling graphs. There is a new chapter showing how to estimate path models using the sem (structural equation modeling) command. Menus have been updated, and several minor changes and corrections have been included based on suggestions from readers.

Contact Form

Name

Email *

Message *

Powered by Blogger.