The.Hottest

W. Holmes Finch, Jocelyn E. Bolin ... 338 pages - Language: ‎English - Publisher: Chapman and Hall/CRC; 3rd edition (April, 2024).


Like its bestselling predecessor, Multilevel Modeling Using R, Third Edition provides the reader with a helpful guide to conducting multilevel data modeling using the R software environment.

After reviewing standard linear models, the authors present the basics of multilevel models and explain how to fit these models using R. They then show how to employ multilevel modeling with longitudinal data and demonstrate the valuable graphical options in R. The book also describes models for categorical dependent variables in both single-level and multilevel data.

The third edition of the book includes several new topics that were not present in the second edition. Specifically, a new chapter has been included, focussing on fitting multilevel latent variable modeling in the R environment. With R, it is possible to fit a variety of latent variable models in the multilevel context, including factor analysis, structural models, item response theory, and latent class models. The third edition also includes new sections in Chapter 11 describing two useful alternatives to standard multilevel models, fixed effects models and generalized estimating equations. These approaches are particularly useful with small samples and when the researcher is interested in modeling the correlation structure within higher-level units (e.g., schools). The third edition also includes a new section on mediation modeling in the multilevel context, in Chapter 11.

This thoroughly updated revision gives the reader state-of-the-art tools to launch their own investigations in multilevel modeling and gain insight into their research.

David Kaplan ... 250 pages - Language: English - Publisher: ‎The Guilford Press; 2nd edition (November, 2023) - ISBN-10:‎ 1462553540 - ISBN-13: ‎978-1462553549.


The second edition of this practical book equips social science researchers to apply the latest Bayesian methodologies to their data analysis problems. It includes new chapters on model uncertainty, Bayesian variable selection and sparsity, and Bayesian workflow for statistical modeling. Clearly explaining frequentist and epistemic probability and prior distributions, the second edition emphasizes use of the open-source RStan software package. The text covers Hamiltonian Monte Carlo, Bayesian linear regression and generalized linear models, model evaluation and comparison, multilevel modeling, models for continuous and categorical latent variables, missing data, and more. Concepts are fully illustrated with worked-through examples from large-scale educational and social science databases, such as the Program for International Student Assessment and the Early Childhood Longitudinal Study. Annotated RStan code appears in screened boxes; the companion website (www.guilford.com/kaplan-materials) provides data sets and code for the book's examples.

New to This Edition: • Utilizes the R interface to Stan—faster and more stable than previously available Bayesian software—for most of the applications discussed. • Coverage of Hamiltonian MC; Cromwell’s rule; Jeffreys' prior; the LKJ prior for correlation matrices; model evaluation and model comparison, with a critique of the Bayesian information criterion; variational Bayes as an alternative to Markov chain Monte Carlo (MCMC) sampling; and other new topics. • Chapters on Bayesian variable selection and sparsity, model uncertainty and model averaging, and Bayesian workflow for statistical modeling.

Jürgen Zierep, Karl Bühler ... 237 pages - Language: ‎English - Publisher: ‎Springer; (February, 2022).


This mature textbook brings the fundamentals of fluid mechanics in a concise and mathematically understandable presentation. In the current edition, a section on dissipation and viscous potential flows has been added. Exercises with solutions help to apply the material correctly and promote understanding.

This book is a translation of the original German 11th edition Grundzüge der Strömungslehre by Jürgen Zierep & Karl Bühler, published by Springer Fachmedien Wiesbaden GmbH, part of Springer Nature in 2018. The translation was done with the help of artificial intelligence (machine translation by the service DeepL.com). A subsequent human revision was done primarily in terms of content, so that the book will read stylistically differently from a conventional translation. Springer Nature works continuously to further the development of tools for the production of books and on the related technologies to support the authors.

Contact Form

Name

Email *

Message *

Powered by Blogger.