Neural Networks and Deep Learning: A Textbook 2nd Edition

Charu C. Aggarwal ... 553 pages - Language: English - Publisher: Springer; 2nd edition (June, 2023).

Neural networks were developed to simulate the human nervous system for Machine Learning tasks by treating the computational units in a learning model in a manner similar to human neurons. The grand vision of neural networks is to create artificial intelligence by building machines whose architecture simulates the computations in the human nervous system. Although the biological model of neural networks is an exciting one and evokes comparisons with science fiction, neural networks have a much simpler and mundane mathematical basis than a complex biological system. The neural network abstraction can be viewed as a modular approach of enabling learning algorithms that are based on continuous optimization on a computational graph of mathematical dependencies between the input and output. These ideas are strikingly similar to classical optimization methods in control theory, which historically preceded the development of neural network algorithms.

Neural networks were developed soon after the advent of computers in the fifties and sixties. Rosenblatt’s perceptron algorithm was seen as a fundamental cornerstone of neural networks, which caused an initial period of euphoria — it was soon followed by disappointment as the initial successes were somewhat limited. Eventually, at the turn of the century, greater data availability and increasing computational power lead to increased successes of neural networks, and this area was reborn under the new label of “Deep Learning.” Although we are still far from the day that Artificial Intelligence (AI) is close to human performance, there are specific domains like image recognition, self-driving cars, and game playing, where AI has matched or exceeded human performance. It is also hard to predict what AI might be able to do in the future. For example, few computer vision experts would have thought two decades ago that any automated system could ever perform an intuitive task like categorizing an image more accurately than a human. The large amounts of data available in recent years together with increased computational power have enabled experimentation with more sophisticated and deep neural architectures than was previously possible. The resulting success has changed the broader perception of the potential of Deep Learning. This book discusses neural networks from this modern perspective.

Neural Networks and Deep Learning: A Textbook 2nd Edition, Charu C. Aggarwal

... HERE is one of the premier education platforms, reaching around the globe to collect essential reference materials and the latest advances for researchers, academics, professionals and students.

Contact Form

Name

Email *

Message *

Powered by Blogger.