Richard B. Hetnarski, Józef Ignaczak ... 837 pages - Publisher: CRC Press; (October 18, 2010)
Language: English - ISBN-13: 978-1439828885
Through its inclusion of specific applications, The Mathematical Theory of Elasticity, Second Edition
continues to provide a bridge between the theory and applications of
elasticity. It presents classical as well as more recent results,
including those obtained by the authors and their colleagues. Revised
and improved, this edition incorporates additional examples and the
latest research results.
New to the Second Edition: Exposition of the application of Laplace transforms, the Dirac delta function, and the Heaviside function + Presentation of the Cherkaev, Lurie, and Milton (CLM) stress
invariance theorem that is widely used to determine the effective moduli
of elastic composites + The Cauchy relations in elasticity + A body force analogy for the transient thermal stresses + A three-part table of Laplace transforms + An appendix that explores recent developments in thermoelasticity.
Although emphasis is placed on the problems of elastodynamics and
thermoelastodynamics, the text also covers elastostatics and
thermoelastostatics. It discusses the fundamentals of linear elasticity
and applications, including kinematics, motion and equilibrium,
constitutive relations, formulation of problems, and variational
principles. It also explains how to solve various boundary value
problems of one, two, and three dimensions.