Articles by "Elasticity"

Showing posts with label Elasticity. Show all posts

Arthur P. Boresi, Ken Chong ... 656 pages - Publisher: Wiley; 3rd edition (December, 2010) ... Language: English - ISBN-10: 0470402555 - ISBN-13: 978-0470402559 ...

Elasticity in Engineering Mechanics has been prized by many aspiring and practicing engineers as an easy-to-navigate guide to an area of engineering science that is fundamental to aeronautical, civil, and mechanical engineering, and to other branches of engineering. With its focus not only on elasticity theory, including nano- and biomechanics, but also on concrete applications in real engineering situations, this acclaimed work is a core text in a spectrum of courses at both the undergraduate and graduate levels, and a superior reference for engineering professionals.

Teodor M. Atanackovic, Ardeshir Guran ... 
374 pages - Publisher: Birkhäuser; (June 16, 2000)
Language: English - ISBN-10: 081764072X - ISBN-13: 978-3540425373

This book is intended to be an introduction to elasticity theory. It is as­ sumed that the student, before reading this book, has had courses in me­ chanics (statics, dynamics) and strength of materials (mechanics of mate­ rials). It is written at a level for undergraduate and beginning graduate engineering students in mechanical, civil, or aerospace engineering. As a background in mathematics, readers are expected to have had courses in ad­ vanced calculus, linear algebra, and differential equations. Our experience in teaching elasticity theory to engineering students leads us to believe that the course must be problem-solving oriented. We believe that formulation and solution of the problems is at the heart of elasticity theory. 1 Of course orientation to problem-solving philosophy does not exclude the need to study fundamentals. By fundamentals we mean both mechanical concepts such as stress, deformation and strain, compatibility conditions, constitu­ tive relations, energy of deformation, and mathematical methods, such as partial differential equations, complex variable and variational methods, and numerical techniques. We are aware of many excellent books on elasticity, some of which are listed in the References. If we are to state what differentiates our book from other similar texts we could, besides the already stated problem-solving ori­ entation, list the following: study of deformations that are not necessarily small, selection of problems that we treat, and the use of Cartesian tensors only.

Mark L. Kachanov, Boris Shafiro, Igor Tsukrov ... 324 pages - Publisher: Springer; (November, 2003) ... Language: English - ISBN-10: 1402014724 - ISBN-13: 978-1402014727 ...

This handbook is a collection of elasticity solutions. Many of the results presented here cannot be found in textbooks and are available in scientific articles only. Some of them were obtained in the closed form quite recently. The solutions have been thoroughly checked and reduced to a "user friendly" form. Every effort has been made to keep the book free of misprints. The theory of elasticity is a mature field and a large number of solutions are ava- able. We had to make choices in selecting material for this book. The emphasis is made on results relevant to general solid mechanics and materials science appli- tions. Solutions related to structural mechanics (beams, plates, shells, etc.) are left out. The content is limited to the linear elasticity. We are grateful to B. Nuller for several clarifications concerning the contact pr- lem and to V. Levin for suggestions on Eshelby's problem. We also appreciate a n- ber of remarks and comments made by L. Germanovich, I. Sevostianov, O. Zharii and R. Zimmerman. We are particularly indebted to E. Karapetian for a substantial help in putting the material together.

Irving H. Shames ... 738 pages- Publisher: CRC Press; Revised edition (February, 1997) ...
Language: English - ISBN-10: 1560326867- ISBN-13: 978-1560326861 ...

Presents certain key aspects of inelastic solid mechanics centered around viscoelasticity, creep, viscoplasticity, and plasticity. It is divided into three parts consisting of the fundamentals of elasticity, useful constitutive laws, and applications to simple structural members, providing extended treatment of basic problems in static structural mechanics, including elastic and inelastic effects. It contains worked-out examples and end-of-chapter problems.

Contact Form

Name

Email *

Message *

Powered by Blogger.